Skip to main content

Advertisement

Log in

Current situation of carbon emissions and countermeasures in China’s ironmaking industry

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The iron and steel industry (ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI, consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However, the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, Y.L. Lei, and D.Y. Pan, Study of CO2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment, Nat. Hazards, 81(2016), No. 2, p. 957.

    Article  Google Scholar 

  2. K. Jiang and P. Ashworth, The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective, Renewable Sustainable Energy Rev. 138(2021), art. No. 110521.

  3. IEA, Global CO2 Emissions Rebounded to Their Highest Level in History in 2021, 2022 [2023-05-05]. https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021

  4. S.J. Zeng, Y.X. Lan, and J. Huang, Mitigation paths for Chinese iron and steel industry to tackle global climate change, Int. J. Greenhouse Gas Control, 3(2009), No. 6, p. 675.

    Article  Google Scholar 

  5. Y.L. Shan, D.B. Guan, H.R. Zheng, et al., China CO2 emission accounts 1997–2015, Sci. Data, 5(2018), art. No. 170201.

  6. L. Dong, G.Y. Miao, and W.G. Wen, China’s carbon neutrality policy: Objectives, impacts and paths, East Asian Policy, 13(2021), No. 1, p. 5.

    Article  Google Scholar 

  7. J.P. Birat, Steel Sectoral Report: Contribution to the UNIDO Roadmap on CCS-fifth Draft, 2010 [2022-12-27]. https://www.globalccsinstitute.com/archive/hub/publications/15671/global-technology-roadmap-ccs-industry-steel-sectoral-report.pdf

  8. H.Y. Sohn, Energy consumption and CO2 emissions in ironmaking and development of a novel flash technology, Metals, 10(2019), No. 1, art. No. 54.

  9. X. Lu, W.J. Tian, H. Li, X.J. Li, K. Quan, and H. Bai, Decarbonization options of the iron and steelmaking industry based on a three-dimensional analysis, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 388.

    Article  Google Scholar 

  10. R.Y. An, B.Y. Yu, R. Li, and Y.M. Wei, Potential of energy savings and CO2 emission reduction in China’s iron and steel industry, Appl. Energy, 226(2018), p. 862.

    Article  Google Scholar 

  11. Z.Q. Guo, R.N. Zhan, Y. Shi, et al., Innovative, and green utilization of zinc-bearing dust by hydrogen reduction: Recovery of zinc and lead, and synergetic preparation of Fe/C microelectrolysis materials, Chem. Eng. J., 456(2023), art. No. 141157.

  12. A. Sane, G. Buragino, A. Makwana, and X.Y. He, Enhancing Direct Reduced Iron (DRI) for Use in Electric Steelmaking, Air Products and Chemicals, Inc., Allentown, PA, USA, 2021 [2022-12-27]. https://www.millennium-steel.com/enhancing-direct-reduced-iron-dri-for-use-in-electric-steelmaking

    Google Scholar 

  13. B. Voraberger, G. Wimmer, U.D. Salgado, E. Wimmer, K. Pastucha, and A. Fleischanderl, Green LD (BOF) steelmaking—Reduced CO2 emissions via increased scrap rate, Metals, 12(2022), No. 3, art. No. 466.

  14. R.Q. Wang, L. Jiang, Y.D. Wang, and A.P. Roskilly, Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review, J. Clean. Prod., 274(2020), art. No. 122997.

  15. World Steel Association (WSA), World Steel in Figures 2022, World crude steel production 1950 to 2021 [2023-05-05]. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022

  16. C.B. Xu and D.Q Cang, A brief overview of low CO2 emission technologies for iron and steel making, J. Iron Steel Res. Int., 17(2010), No. 3, p. 1.

    Article  Google Scholar 

  17. J.C. He, China’s iron & steel industry and the global financial crisis, ISIJ Int., 51(2011), No. 5, p. 696.

    Article  CAS  Google Scholar 

  18. X.C. Tan, H. Li, J.X. Guo, B.H. Gu, and Y. Zeng, Energy-saving and emission-reduction technology selection and CO2 emission reduction potential of China’s iron and steel industry under energy substitution policy, J. Cleaner Prod., 222(2019), p. 823.

    Article  CAS  Google Scholar 

  19. X.L. Wang, Y.W. Wei, and Q.L. Shao, Decomposing the decoupling of CO2 emissions and economic growth in China’s iron and steel industry, Resour. Conserv. Recycl., 152(2020), art. No. 104509.

  20. T. Ariyama and M. Sato, Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works, ISIJ Int., 46(2006), No. 12, p. 1736.

    Article  CAS  Google Scholar 

  21. H.M. Ahmed, E.A. Mousa, M. Larsson, and N.N. Viswanathan, Recent trends in ironmaking blast furnace technology to mitigate CO2 emissions: Top charging materials, [in] P. Cavaliere, ed. Ironmaking Steelmaking Processes, Springer, Cham., 2016, p. 101

    Chapter  Google Scholar 

  22. T. Ariyama, M. Sato, T. Nouchi, and K. Takahashi, Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel works, ISIJ Int., 56(2016), No. 10, p. 1681.

    Article  CAS  Google Scholar 

  23. J. Zhao, H.B. Zuo, Y.J. Wang, J.S. Wang, and Q.G. Xue, Review of green and low-carbon ironmaking technology, Ironmaking Steelmaking, 47(2020), No. 3, p. 296.

    Article  CAS  Google Scholar 

  24. J.W. Bao, M.S. Chu, Z.G. Liu, D. Han, L.G. Cao, and J. Guo, Research progress on preparation and application of iron coke in blast furnace, Iron Steel, 55(2020), No. 8, p. 38.

    CAS  Google Scholar 

  25. H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, J. Tang, and Z.W. Ying, Effects of coal and iron ore blending on metallurgical properties of iron coke hot briquette, Powder Technol., 328(2018), p. 318.

    Article  CAS  Google Scholar 

  26. H.T. Wang, M.S. Chu, Z.W. Ying, W. Zhao, Z.G. Liu, and J. Tang, Current status on ferro coke technology development, Sintering Pelletizing, 42(2017), No. 4, p. 44.

    Google Scholar 

  27. H.T. Wang, M.S. Chu, J.W. Bao, D. Han, L.G. Cao, and W. Zhao, Research on preparation and application for a new burden of iron–carbon agglomerate for low carbon BF ironmaking, J. Iron Steel Res., 31(2019), No. 2, p. 103.

    CAS  Google Scholar 

  28. X.M. He, X.C. Zeng, D. Zhang, X.H. Cheng, and S. Yi, Development of new materials for blast furnace blowing, Fuel Chem. Processes, 46(2015), No. 2, p. 12.

    Google Scholar 

  29. Y.B. Chen and H.B. Zuo, Review of hydrogen-rich ironmaking technology in blast furnace, Ironmaking Steelmaking, 48(2021), No. 6, p. 749.

    Article  CAS  Google Scholar 

  30. X.Y. Liu, X.Q. Mao, T. Bo, and X.Y. Gao, Industrial test of injecting coke oven gas in No.4 BF of Jigang Group Co., Ltd., Ironmaking, 38(2019), No. 2, p. 39.

    Google Scholar 

  31. W. Zhang, J. Dai, C.Z. Li, X.B. Yu, Z.L. Xue, and H. Saxén, A review on explorations of the oxygen blast furnace process, Steel Res. Int., 92(2021), No. 1, art. No. 2000326.

  32. Y. Zhou, H.J. Zhou, and C.M. Xu, Exploration of hydrogen sources for the low-carbon and green production in the steel industry in China, Chem. Ind. Eng. Prog., 41(2022), No. 2, p. 1073.

    Google Scholar 

  33. CMISI Low-carbon Research Team, Hydrogen Metallurgy Research and Recent Development in China. Metallurgical Industry Information Standards Institute, 2021 [2022-12-30]. http://www.cmisi.com.cn/default/index/newsDetails?newsId=994

  34. R. Liu, Z.F. Zhang, X.J. Liu, X. Li, H.Y. Li, and Q. Lv, Development trend and prospect of low-carbon green ironmaking technology, Iron Steel, 57(2022), No. 5, p. 1.

    CAS  Google Scholar 

  35. Y.L. Jin, Z.J. He, and C. Wang, Analysis on low carbon emission of blast furnace with different raw materials structure, Iron Steel, 54(2019), No. 7, p. 8.

    CAS  Google Scholar 

  36. M.X. Xu and Y.L. Zhang, Analysis of pellet technology and production of China in 21st century, Sintering Pelletizing, 42(2017), No. 2, p. 25.

    Google Scholar 

  37. Z.J. Liu, J.Q. Huang, J.L. Zhang, L.L. Niu, Y.Z. Wang, Development and practice of blast furnace high proportion pellet smelting technology, J. Univ. Sci. Technol. Liaoning, 44(2021), No. 2, p. 85.

    Google Scholar 

  38. Mysteel, Mysteel: Domestic iron ore market review in the first half of 2022 and outlook for the second half, 2022 [2023-05-12]. https://news.mysteel.com/22/0715/15/ACFD7E1866AD4F83.html

  39. Mysteel, Mysteel iron ore series annual report: Pellet market review in 2018 and outlook in 2019, 2019 [2023-05-12]. https://tks.mysteel.com/19/0107/10/FC4E541F10B00E07.html

  40. China united steel united steel net, world pelletizing industry development report 2022, 2022 [2023-05-12]. https://www.zgltw.cn/m/view.php?aid=40012

  41. C.L Wang, Q. Quan, S.Q. Qi, Y.X. Zhao, Y.J. Cao, and P.C. Li, Study on design of high proportion pellet blast furnace [in] 2019 National Blast Furnace Ironmaking Academic Annual Conference, Guiyang, 2019, p. 295.

  42. C. Ramakgala and G. Danha, A review of ironmaking by direct reduction processes: Quality requirements and sustainability, Procedia Manuf., 35(2019), p. 242.

    Article  Google Scholar 

  43. Y.J. Wang, H.B. Zuo, and J. Zhao, Recent progress and development of ironmaking in China as of 2019: An overview, Ironmaking Steelmaking, 47(2020), No. 6, p. 640.

    Article  CAS  Google Scholar 

  44. Midrex Technologies Inc., 2021 world direct reduction statistics, 2022 [2023-05-05]. https://www.midrex.com/wpcontent/uploads/MidrexSTATSBook2021.pdf

  45. X. Jiang, L. Wang, and F.M. Shen, Shaft furnace direct reduction technology—Midrex and energiron, Adv. Mater. Res., 805–806(2013), p. 654.

    Article  Google Scholar 

  46. D.S. Kumar and S. Rameshwar, Direct reduced iron: Production [in] R. Colás, G.E. Totten, E. Altschuler et al., eds., Encyclopedia of Iron, Steel, and Their Alloy, CRC Press, Florida, 2016, p. 1082.

    Google Scholar 

  47. G.R. Li, The Chinese iron ore deposits and ore production, [In] V. Shatokha, ed., Iron Ores and Iron Oxide Materials, IntechOpen, 2018.

  48. J.N. Yin, M. Lindsay, and S.R. Teng, Mineral prospectivity analysis for BIF iron deposits: A case study in the Anshan-Benxi area, Liaoning province, north-east China, Ore Geol. Rev., 120(2020), art. No. 102746.

  49. W. Chen and L.G. Zhang, Status quo and development trend of complex refractory iron ore beneficiation technology, Nonferrous Metal (Mineral Processing Section), S1(2013), No. 1, p. 19.

    Google Scholar 

  50. X.F. Tang, Research status and development trend of beneficiation technology on complex hematite, Mod. Min., 30(2014), No. 3, p. 14.

    Google Scholar 

  51. Y.M. Hu and Y. Zhang, Progress in research on beneficiation technology for Yuanjiacun iron ore, Met. Mine, 36(2007), No. 6, p. 25.

    Google Scholar 

  52. J.C. Cao, L. Lu, F. Cao, and T.B. Yue, Experimental study on beneficiability of some low-grade iron ore in inner Mongolia, Min. Metall. Eng., 32(2012), No. 5, p. 37.

    Google Scholar 

  53. Y.M. Hu and Y.X. Han, Study on the separation of the oxidized ore from Yuanjiacun iron mine, Met. Mine, 41(2012), No. 10, p. 65.

    Google Scholar 

  54. Y. Yang, W.X. Zhang, G.F. Zhao, and S.Q. Ding, Process tests on a micro-fine and refractory iron ore, Nonferrous Met. Sci. Eng., 3(2012), No. 3, p. 70.

    Google Scholar 

  55. Z.J. Fan, N.J. Cao, and Y.H. Rao, Investigation of mineral processing of a fine low-grade refractory iron ore, Met. Mine, 40(2011), No. 1, p. 51.

    Google Scholar 

  56. W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443.

    Article  CAS  Google Scholar 

  57. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349.

    Article  CAS  Google Scholar 

  58. J.H. Xiao and Y. Zhang, Experimental study on rotary magnetic roasting for a high-phosphorus oolitic hematite and limonite ore, Met. Mine, 39(2010), No. 3, p. 43.

    Google Scholar 

  59. H.C. Li, Z. Shen, and X.Y. Liang, Rotary kiln magnetic roasting and magnetic separation test of powdery specularite ore, Min. Metall. Eng., No. 6(2021), p. 89.

  60. Z.Z. Chen, M. Zhang, D. Wang, and Y.J. Mao, Experiment on rotary kiln magnetizing roasting-low intensity magnetic separation of a siderite-hematite mixture iron ore, Modern Min., 34(2018), No. 10, p. 109.

    CAS  Google Scholar 

  61. S.H. Xue, G.S. Zhang, Y.J. Mao, H.B. Li, D. Wang, and H.T. Zhao, Research on magnetization roasting technology for siderite and limonite in rotary kiln, [in] The 8th CSM Steel Congress, Beijing, 2011.

  62. G.M. Shi, H.J. Chen, and C.B. Wu, Study on benefi ciation experiment of a refractory limonite from Yunnan, Min. Processing Equip., 41(2013), No. 8, p. 95.

    Google Scholar 

  63. L.F. Luo, W. Chen, X.H. Yan, and Q.L. Wang, Pilot plant test of megnetization roasting of daxigou siderite ore by rotary kiln, Min. Metall. Eng., 2006, No. 2, p. 71.

  64. Z.D. Tang, P. Gao, Y.X. Han, and W.D. Guo, Fluidized bed roasting technology in iron ores dressing in China: A review on equipment development and application prospect, J. Min. Metall. Sect. B., 55(2019), No. 3, p. 295.

    Article  Google Scholar 

  65. S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796.

    Article  CAS  Google Scholar 

  66. Y.F. Yu and C.Y. Qi, Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore, J. Wuhan Univ. Technol. Mater Sci. Ed., 26(2011), No. 2, p. 176.

    Article  CAS  Google Scholar 

  67. Y.F. Yu and W. Chen, Application of flash magnetizing roasting technique in beneficiation of siderite and limonite, [in] The 2010 International Symposium on Project Management, Sanya, 2010, p. 13.

  68. X.Y. Liu, Y.F. Yu, Z.G. Hong, Z.Y. Peng, J.L. Li, and Q. Zhao, Development and application of flash (fluidized) magnetizing roasting technology for refractory weak magnetic iron ore, Min. Metall. Eng., 37(2017), No. 2, p. 40.

    CAS  Google Scholar 

  69. Q.L. Wang, W. Chen, Y.F. Yu, Z.Y. Peng, X.S. Lu, and X.Y. Liu, Test research on the magnetization roasting quickly technology of a complex and refractory limonite ore, Conserv. Util. Miner. Resour., 2010, No. 3, p. 27.

  70. Q.S. Zhu and H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J., 65(2014), No. 7, p. 2437.

    CAS  Google Scholar 

  71. Y.J. Li, R. Wang, Y.X. Han, and X.C. Wei, Phase transformation in suspension roasting of oolitic hematite ore, J. Cent. South Univ., 22(2015), No. 12, p. 4560.

    Article  CAS  Google Scholar 

  72. Y.X. Han, Y.J. Li, P. Gao, J.W. Yu, Innovative and efficient beneficiation technology of refractoryiron ores based on suspended magnetization roasting, J. Iron Steel Res., 31(2019), No. 2, p. 6.

    Google Scholar 

  73. D.C. Kong, J. Liu, S.M. Zhang, and Y.J. Li, Experimental study on suspension magnetization roasting-magnetic separation of an iron ore, Multipurpose Util. Miner. Resour., 2022, No. 5, p. 130.

  74. C. Chen, Y.J. Li, Y.S. Zhang, R. Wang, and Y.X. Han, Study on suspension roasting for oolitic hematite, Multipurpose Util. Miner. Resour., 2013, No. 6, p. 30.

  75. S. Yuan, Y.X. Han, P. Gao, Y.J. Li, and Y.S. Sun, Research status and development of suspension roasting for refractory iron ore, Met. Mine, 2016, No. 12, p. 9.

  76. X.L. Zhang, Y.X. Han, Y.S. Sun, and Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol., 352(2019), p. 16.

    Article  CAS  Google Scholar 

  77. V. Nunna, S. Hapugoda, M.I. Pownceby, and G.J. Sparrow, Beneficiation of low-grade, goethite-rich iron ore using microwave-assisted magnetizing roasting, Miner. Eng., 166(2021), art. No. 106826.

  78. W.T. Zhou, Y.S. Sun, Y.X. Han, P. Gao, and Y.J. Li, Mechanism of microwave assisted suspension magnetization roasting of oolitic hematite ore, J. Cent. South Univ., 29(2022), No. 2, p. 420.

    Article  CAS  Google Scholar 

  79. S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting—Magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449.

    Article  CAS  Google Scholar 

  80. Y.S. Sun, Q. Zhang, Y.X. Han, P. Gao, and G.F. Li, Comprehensive utilization of iron and phosphorus from high-phosphorus refractory iron ore, JOM, 70(2018), No. 2, p. 144.

    Article  CAS  Google Scholar 

  81. K.Q. Li, S. Ping, H.Y. Wang, and W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1035.

    Article  CAS  Google Scholar 

  82. Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Review on coal-based reduction and magnetic separation for refractory iron-bearing resources, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2087.

    Article  CAS  Google Scholar 

  83. R. Mao, F. Wang, H. Jin, Z.W. Zhang, and L.J. Shi, Experimental research on grinding rich ore powder originally used for sintering to prepare pellet, Sintering Pelletizing, 47(2022), No. 2, p. 24.

    Google Scholar 

  84. D.S. Peng, J. Pan, J. Li, et al., Experimental research on preparation of fluxed pellets from fine grinding Carajas powder, Sintering Pelletizing, 46(2021), No. 4, p. 50.

    Google Scholar 

  85. D.Q. Zhu, Z.J. Huang, C.C. Yang, J. Pan, and Z.Q. Guo, Research on production of oxidized pellets from GF88 hematite concentrate, Sintering Pelletizing, 45(2020), No. 6, p. 61.

    Google Scholar 

  86. H.Y. Tian, J. Pan, D.Q. Zhu, D.Z. Wang, and Y.X. Xue, Utilization of ground sinter feed for oxidized pellet production and its effect on pellet consolidation and metallurgical properties, [in] Z.W. Peng, J.Y. Hwang, J. P. Downey, et al. eds., 11th International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Series. Springer, Cham, 2020, p. 857.

    Google Scholar 

  87. L. Ma, G.L. Qing, Y.Q. Tian, L.Y. Zhao, and Y. Zhang, Experimental study on pelletizing proportioned with grinded MAC fines, Sintering and Pelletizing, 44(2019), No. 2, p. 39.

    Google Scholar 

  88. Y. Zhang, X.J. Wu, H.L. Niu, et al., Study on sinter iron ores and titanium ores used in pelletizing, [in] Characterization of Minerals, Metals, and Materials 2021, The Minerals, Metals & Materials Series. Springer, Cham., 2021 p. 155.

    Chapter  Google Scholar 

  89. R.M. Papini, P.R.G. Brandão, and A.E.C. Peres, Cationic flotation of iron ores: Amine characterization and performance, Min. Metall. Explor., 18(2001), No. 1, p. 5.

    CAS  Google Scholar 

  90. Y.M. Zhu, P. Wang, Y.P. Yang, Y.X. Han, and Y.J. Li, Application of cationic collector DYP in iron ores reverse flotation, Met. Mine, 2015, No. 6, p. 83.

  91. Y.P. Yang, Study on Flotation of Donganshan Iron Ore with New Cationic Collector [Dissertation], Northeastern University, Shenyang, 2014.

    Google Scholar 

  92. Y.M. Zhu, J.L. Chen, J.W. Jia, and S.G. Liu, Investigation to flotation of quartz with new cation collector DBA-2, Multipurpose Util. Miner. Resour., 9(2015), No. 2, p. 39.

    Google Scholar 

  93. Y.M. Zhu, J.L. Chen, J.W. Jia, and S.A. Liu, Collecting performance and mechanism of a new cation collector to quartz, Met. mine, 44(2015), No. 5, p. 81.

    Google Scholar 

  94. Z. Lei, G.J. Mei, X.Y. Zhu, M.M. Yu, and N. Liu, Performance of a new low-temperature-resistant cationic collector in mineral flotation, J. China Univ. Min. Technol., 44(2015), No. 5, p. 917.

    CAS  Google Scholar 

  95. Z.Y.Y. Cheng, Y.M. Zhu, Y.J. Li, and Y.X. Han, Flotation and adsorption of quartz with the new collector butane-3-heptyloxy-1, 2-diamine, Mineral. Petrol., 113(2019), No. 2, p. 207.

    Article  CAS  Google Scholar 

  96. W.B. Liu, W.G. Liu, B. Zhao, et al., Novel insights into the adsorption mechanism of the isopropanol amine collector on magnesite ore: A combined experimental and theoretical computational study, Powder Technol., 343(2019), p. 366.

    Article  CAS  Google Scholar 

  97. Y.Y. Ge, J. Yu, and P.C. Zhu, Review of flotation reagents for iron ore, Modern Min., 11(2009), p. 6.

    Google Scholar 

  98. X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187.

    Article  CAS  Google Scholar 

  99. Z.Q. Huang, H. Zhong, S. Wang, L.Y. Xia, W.B. Zou, and G.Y. Liu, Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1, 2-bis(dimethyldodecyl-ammonium bromide), Chem. Eng. J., 257(2014), p. 218.

    Article  CAS  Google Scholar 

  100. Y.M. Zhu, B.B. Luo, C.Y. Sun, et al., Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (101) surface, Miner. Eng., 92(2016), p. 72.

    Article  CAS  Google Scholar 

  101. J. Liu, J.Q. Zhang, and J.T. Liu, Status quo of iron ores flotation reagent, China Min. Mag., 16(2007), No. 2, p. 106.

    Google Scholar 

  102. C. Min, X.M. Hu, and H.Q. Zhang, Application of mixed anion collector in reverse flotation of high phosphorus oolitic hematite, Min. Metall. Eng., 37(2017), No. 2, p. 49.

    Google Scholar 

  103. R. Cui and X.L. Deng, Experimental study on flotation performance of a novelfatty acid collector, Conserv. Util. Miner. Resour., 2018, No. 6, p. 46.

  104. Z.D. Tang, P. Gao, Y.S. Sun, et al., Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting, Powder Technol., 360(2020), p. 649.

    Article  CAS  Google Scholar 

  105. B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface, Miner. Eng., 77(2015), p. 86.

    Article  CAS  Google Scholar 

  106. L.J. Xiao, Research on Production of High Purity Iron Concentrates by Reverse Flotation Using Anionic Collector [Dissertation], Northeastern University, Shenyang, 2016.

    Google Scholar 

  107. J. Fang, Y.Y. Ge, S.B. Liu, J. Yu, and C. Liu, Investigations on a novel collector for anionic reverse flotation separation of quartz from iron ores, Physicochem. Probl. Miner. Process., 57(2021), No. 1, p. 136.

    Article  CAS  Google Scholar 

  108. B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, Reverse flotation of iron ore using amphoteric surfactant: 2-((2-(decyloxy)ethyl)amino)lauric acid, Physicochem. Probl. Miner. Process., 57(2021), No. 3, p. 73.

    Article  CAS  Google Scholar 

  109. Y.Y. Ge, J. Yu, Y.X. Chen, S.H. Guo, and P.C. Zhu, Study on reverse flotation of impurities containing silicon and sulfur in iron ore with new reagent MG, Conserv. Util. Miner. Resour., 2010, No. 1, p. 33.

  110. K. Ogino and M. Abe, Mixed Surfactant Systems, CRC Press, Florida, 1992.

    Google Scholar 

  111. B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697.

    Article  CAS  Google Scholar 

  112. Y. Chen, B. Xu, M. Li, T.L. Zhao, and M.Z. Zhang, Application and mechanism of XK-28 combined collector in desilication of iron ore, Multipurpose Util. Miner. Resour., 2021, No. 3, p. 43.

  113. D. Lu, Y. Hu, Y. Li, T. Jiang, and Y. Wang, Reverse flotation of ultrafine magnetic concentrate by using mixed anionic/cationic collectors, Physicochem. Probl. Miner. Process., 53(2017), No. 2, p. 724.

    CAS  Google Scholar 

  114. J. Tian, L.H. Xu, Y.H. Yang, J. Liu, X.B. Zeng, and W. Deng, Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors, Int. J. Miner. Process., 166(2017), p. 102.

    Article  CAS  Google Scholar 

  115. Z.C. Yang, Q. Teng, J. Liu, W.P. Yang, D.H. Hu, and S.Y. Liu, Use of NaOl and CTAB mixture as collector in selective flotation separation of enstatite and magnetite, Colloids Surf. A, 570(2019), p. 481.

    Article  CAS  Google Scholar 

  116. K. Hanumantha Rao and K.S.E. Forssberg, Mixed collector systems in flotation, Int. J. Miner. Process., 51(1997), No. 1–4, p. 67.

    Article  CAS  Google Scholar 

  117. W.B. Liu, W.X. Huang, F. Rao, Z.L. Zhu, Y.M. Zheng, and S.M. Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 446.

    Article  CAS  Google Scholar 

  118. J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656.

    Article  CAS  Google Scholar 

  119. L.M. Ma, J.L. Zhang, Y.Z. Wang, et al., Mixed burden softening-melting property optimization based on high-silica fluxed pellets, Powder Technol., 412(2022), art. No. 117979.

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation China (No. 52274343), the Youth Natural Science Foundation China (No. 51904347), and the China Baowu Low Carbon Metallurgy Innovation Foundation (No. BWLCF202102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqi Guo.

Ethics declarations

Zhengqi Guo is a youth editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Guo, Z., Pan, J. et al. Current situation of carbon emissions and countermeasures in China’s ironmaking industry. Int J Miner Metall Mater 30, 1633–1650 (2023). https://doi.org/10.1007/s12613-023-2632-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2632-7

Keywords

Navigation