Skip to main content

Advertisement

Log in

Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg-8Li-4Zn-1Mn alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Optimizing the mechanical properties and damping capacity of the duplex-structured Mg-Li-Zn-Mn alloy by tailoring the microstructure via hot extrusion was investigated. The results show that the Mg-8Li-4Zn-1Mn alloy is mainly composed of α-Mg, β-Li, Mg-Li-Zn, and Mn phases. The microstructure of the test alloy is refined owing to dynamic recrystallization (DRX) during hot extrusion. After hot extrusion, the crushed precipitates are uniformly distributed in the test alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of as-extruded alloy reach 156 MPa, 208 MPa, and 32.3%, respectively, which are much better than that of as-cast alloy. Furthermore, the as-extruded and as-cast alloys both exhibit superior damping capacities, with the damping capacity (Q−1) of 0.030 and 0.033 at the strain amplitude of 2 × 10−3, respectively. The mechanical properties of the test alloy can be significantly improved by hot extrusion, whereas the damping capacities have no noticeable change, which indicates that the duplex-structured Mg-Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705.

    Article  CAS  Google Scholar 

  2. L.X. Hong, R.X. Wang, and X.B. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1570.

    Article  CAS  Google Scholar 

  3. J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1.

    Article  CAS  Google Scholar 

  4. J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551.

    Article  CAS  Google Scholar 

  5. S.Y. Jin, X.C. Ma, R.Z. Wu, et al., Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453.

    Article  CAS  Google Scholar 

  6. T.C. Chang, J.Y. Wang, C.L. Chu, and S. Lee, Mechanical properties and microstructures of various Mg-Li alloys, Mater. Lett., 60(2006), No. 27, p. 3272.

    Article  CAS  Google Scholar 

  7. Y.H. Kim, J.H. Kim, H.S. Yu, J.W. Choi, and H.T. Son, Microstructure and mechanical properties of Mg-xLi-3Al-1Sn-0.4Mn alloys (x = 5, 8 and 11wt%), J. Alloys Compd., 583(2014), p. 15.

    Article  CAS  Google Scholar 

  8. J.F. Wang, D.D. Xu, R.P. Lu, and F.S. Pan, Damping properties of as-cast Mg-xLi-1Al alloys with different phase composition, Trans. Nonferrous Met. Soc. China, 24(2014), No. 2, p. 334.

    Article  Google Scholar 

  9. R.P. Lu, K. Jiao, N.T. Li, H. Hou, J.F. Wang, and Y.H. Zhao, Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys, J. Magnes. Alloys, (2022). DOI: https://doi.org/10.1016/j.jma.2022.06.013

  10. X.F. Huang, W.Z. Zhang, J.F. Wang, and W.W. Wei, A transmission electron microscopy investigation of defects in an Mg-Cu-Mn-Zn-Y damping alloy, J. Alloys Compd., 516(2012), p. 186.

    Article  CAS  Google Scholar 

  11. C. Xu, J.H. Zhang, S.J. Liu, et al., Microstructure, mechanical and damping properties of Mg-Er-Gd-Zn alloy reinforced with stacking faults, Mater. Des., 79(2015), p. 53.

    Article  CAS  Google Scholar 

  12. H.S. Jiang, X.G. Qiao, M.Y. Zheng, K. Wu, C. Xu, and S. Kamado, The partial substitution of Y with Gd on microstructures and mechanical properties of as-cast and as-extruded Mg-10Zn-6Y-0.5Zr alloy, Mater. Charact., 135(2018), p. 96.

    Article  CAS  Google Scholar 

  13. H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg-5Zn-1.5Y magnesium alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 3, p. 490.

    Article  CAS  Google Scholar 

  14. K. Guan, D. Egusa, E. Abe, et al., Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents, J. Magnes. Alloys, 10(2022), No. 5, p. 1220.

    Article  CAS  Google Scholar 

  15. Z.Z. Jin, M. Zha, S.Q. Wang, et al., Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility, J. Magnes. Alloys, 10(2022), No. 5, p. 1191.

    Article  CAS  Google Scholar 

  16. Y.T. Tang, C. Zhang, L.B. Ren, et al., Effects of Y content and temperature on the damping capacity of extruded Mg-Y sheets, J. Magnes. Alloys, 7(2019), No. 3, p. 522.

    Article  CAS  Google Scholar 

  17. J.F. Wang, P.F. Song, S. Gao, X.F. Huang, Z.Z. Shi, and F.S. Pan, Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg-Zn-Y-Zr alloys, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5914.

    Article  CAS  Google Scholar 

  18. L.H. Li, H.S. Cao, F.G. Qi, et al., Effect of heat treatment on microstructure and mechanical properties of Mg-5Zn-1Mn alloy tube, Metals, 10(2020), No. 3, art. No. 301.

    Google Scholar 

  19. X. Ye, H.S. Cao, F.G. Qi, et al., Effect of Y addition on the microstructure and mechanical properties of ZM31 alloy, Materials, 13(2020), No. 3, art. No. 583.

    Google Scholar 

  20. C.H. Hou, F.G. Qi, Z.S. Ye, N. Zhao, D.F. Zhang, and X.P. Ouyang, Effects of Mn addition on the microstructure and mechanical properties of Mg-Zn-Sn alloys, Mater. Sci. Eng. A, 774(2020), art. No. 138933.

  21. R.P. Lu, K. Jiao, Y.H. Zhao, K. Li, K.Y. Yao, and H. Hou, Influence of long-period-stacking ordered structure on the damping capacities and mechanical properties of Mg-Zn-Y-Mn ascast alloys, Materials, 13(2020), No. 20, art. No. 4654.

  22. S.Q. Chen, X.P. Dong, R. Ma, L. Zhang, H. Wang, and Z.T. Fan, Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg-1%Mn based alloy, Mater. Sci. Eng. A, 551(2012), p. 87.

    Article  CAS  Google Scholar 

  23. X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, and C.L. Cui, Microstructures and properties of superlight Mg-Li-Al-Zn wrought alloys, J. Alloys Compd., 486(2009), No. 1–2, p. 722.

    Article  CAS  Google Scholar 

  24. J.F. Wang, Z.S. Wu, S. Gao, et al., Optimization of mechanical and damping properties of Mg-0.6Zr alloy by different extrusion processing, J. Magnes. Alloys, 3(2015), No. 1, p. 79.

    Article  CAS  Google Scholar 

  25. G. Zhou, Y. Yang, L. Sun, et al., Tailoring the microstructure, mechanical properties and damping capacities of Mg-4Li-3Al-0.3Mn alloy via hot extrusion, J. Mater. Res. Technol., 19(2022), p. 4197.

    Article  CAS  Google Scholar 

  26. S. Feng, W.C. Liu, J. Zhao, G.H. Wu, H.B. Zhang, W.J. Ding, Effect of extrusion ratio on microstructure and mechanical properties of Mg-8Li-3Al-2Zn-0.5Y alloy with duplex structure, Mater. Sci. Eng. A, 692(2017), p. 9.

    Article  CAS  Google Scholar 

  27. G. Zhou, Y. Yang, H.Z. Zhang, et al., Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength, J. Mater. Sci. Technol., 103(2022), p. 186.

    Article  Google Scholar 

  28. H. Ji, G.H. Wu, W.C. Liu, X.L. Zhang, L. Zhang, and M.X. Wang, Origin of the age-hardening and age-softening response in Mg-Li-Zn based alloys, Acta Mater., 226(2022), art. No. 117673.

  29. H. Ji, G.H. Wu, W.C. Liu, X.L. Liang, G.L. Liao, and D.H. Ding, Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg-xLi-5Zn-0.5Er (x = 8, 10 and 12 wt%) alloys, Mater. Charact., 159(2020), art. No. 110008.

  30. H.J. Deng, Y. Yang, M.M. Li, et al., Effect of Mn content on the microstructure and mechanical properties of Mg-6Li-4Zn-xMn alloys, Prog. Nat. Sci.: Mater. Int., 31(2021), No. 4, p. 583.

    Article  CAS  Google Scholar 

  31. A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, and H. Tsubakino, Precipitation in Mg-(4—13)%Li-(4—5)%Zn ternary alloys, Mater. Trans., 44(2003), No. 4, p. 619.

    Article  CAS  Google Scholar 

  32. H. Ji, G.H. Wu, W.C. Liu, J.W. Sun, and W.J. Ding, Role of extrusion temperature on the microstructure evolution and tensile properties of an ultralight Mg-Li-Zn-Er alloy, J. Alloys Compd., 876(2021), art. No. 160181.

  33. Y.J. Ma, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen, Microstructure, mechanical properties and damping capacity of asextruded Mg-1.5Gd alloys containing rare-earth textures, Mater. Charact., 189(2022), art. No. 111969.

  34. H.F. Sun, C.J. Li, and W.B. Fang, Evolution of microstructure and mechanical properties of Mg-3.0Zn-0.2Ca-0.5Y alloy by extrusion at various temperatures, J. Mater. Process. Technol., 229(2016), p. 633.

    Article  CAS  Google Scholar 

  35. S.F. Luo, N. Wang, Y. Wang, et al., Texture, microstructure and mechanical properties of an extruded Mg-10Gd-1Zn-0.4Zr alloy: Role of microstructure prior to extrusion, Mater. Sci. Eng. A, 849(2022), art. No. 143476.

  36. Z.M. Hua, B.Y. Wang, C. Wang, et al., Solute segregation assisted superplasticity in a low-alloyed Mg-Zn-Ca-Sn-Mn alloy, Materialia, 14(2020), art. No. 100918.

  37. Q.H. Wang, H.W. Zhai, L.T. Liu, et al., Exploiting an as-extruded fine-grained Mg-Bi-Mn alloy with strength-ductility synergy via dilute Zn addition, J. Alloys Compd., 924(2022), art. No. 166337.

  38. M. Yuan, C. He, J. Zhao, et al., Microstructure evolution and mechanical properties of the Mg-Sm-Gd-Zn-Zr alloy during extrusion, J. Mater. Res. Technol., 15(2021), p. 2518.

    Article  CAS  Google Scholar 

  39. J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater., 48(2003), No. 8, p. 1009.

    Article  CAS  Google Scholar 

  40. P.F. Qin, Q. Yang, Y.Y. He, et al., Microstructure and mechanical properties of high-strength high-pressure die-cast Mg-4Al-3La-1Ca-0.3Mn alloy, Rare Met., 40(2021), No. 10, p. 2956.

    Article  CAS  Google Scholar 

  41. Z. Zhang, J.H. Zhang, J.S. Xie, et al., Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation, Scripta Mater., 209(2022), art. No. 114414.

  42. A. Granato and K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies, J. Appl. Phys., 27(1956), No. 7, p. 789.

    Article  Google Scholar 

  43. J.H. Jun, Damping behavior of Mg-Zn-Al casting alloys, Mater. Sci. Eng. A, 665(2016), p. 86.

    Article  CAS  Google Scholar 

  44. B.K. Sugimoto, K. Niiya, T. Okamoto, and K. Kishitake, A study of damping capacity in magnesium alloys, Trans. JIM, 18(1977), No. 3, p. 277.

    Article  CAS  Google Scholar 

  45. X.P. Zhou, H.G. Yan, J.H. Chen, et al., Effects of the β1’ precipitates on mechanical and damping properties of ZK60 magnesium alloy, Mater. Sci. Eng. A, 804(2021), art. No. 140730.

  46. D. Wang, X.C. Ma, R.Z. Wu, et al., Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg-Y-Er-Zn-Zr alloy, Mater. Sci. Eng. A, 830(2022), art. No. 142298.

  47. X.S. Hu, K. Wu, M.Y. Zheng, W.M. Gan, and X.J. Wang, Low frequency damping capacities and mechanical properties of Mg-Si alloys, Mater. Sci. Eng. A, 452–453(2007), p. 374.

    Article  Google Scholar 

  48. D.Q. Wan, J.C. Wang, G.F. Wang, et al., Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg-3wt.%Ni based alloy, Mater. Sci. Eng. A, 494(2008), No. 1–2, p. 139.

    Google Scholar 

  49. J.H. Wang, Y. Jin, R.Z. Wu, et al., Simultaneous improvement of strength and damping capacities of Mg-8Li-6Y-2Zn alloy by heat treatment and hot rolling, J. Alloys Compd., 927(2022), art. No. 167027.

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFB 3701100), the National Natural Science Foundation of China (Nos. 52171104 and U20A20234), the Chongqing Research Program of Basic Research and Frontier Technology, China (Nos. cstc2021ycjh-bgzxm0086 and 2019jcyj-msxmX0306), the Fundamental Research Funds for Central Universities, China (Nos. SKLMT-ZZKT-2022R04, 2021CDJJMRH-001, and SKLMT-ZZKT-2022M12), and the 111 Project by the Ministry of Education and the State Administration of Foreign Experts Affairs of China (No. B16007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyang Gao or Yan Yang.

Additional information

Conflict of Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, T., Zhu, Y., Gao, Y. et al. Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg-8Li-4Zn-1Mn alloys. Int J Miner Metall Mater 30, 949–958 (2023). https://doi.org/10.1007/s12613-022-2572-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2572-7

Keywords

Navigation