Skip to main content
Log in

Comparison of the interface reaction behaviors of CaO-V2O5 and MnO2-V2O5 solid-state systems based on the diffusion couple method

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag. In this work, CaO-V2O5 and MnO2-V2O5 diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms. Then, the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis. Results show that with the extension of the roasting time, the diffusion reaction gradually proceeds among the CaO-V2O5 and MnO2-V2O5 diffusion couples. The regional boundaries of calcium and vanadium are easily identifiable for the CaO-V2O5 diffusion couple. Meanwhile, for the MnO2-V2O5 diffusion couple, MnO2 gradually decomposes to form Mn2O3, and vanadium diffuses into the interior of Mn2O3. Only a part of vanadium combines with manganese to form the diffusion production layer. CaV2O6 and MnV2O6 are the interfacial reaction products of the CaO-V2O5 and MnO2-V2O5 diffusion couples, respectively, whose thicknesses are 39.85 and 32.13 µm when roasted for 16 h. After 16 h, both diffusion couples reach the reaction equilibrium due to the limitation of diffusion. The diffusion coefficient of the CaO-V2O5 diffusion couple is higher than that of the MnO2-V2O5 diffusion couple for the same roasting time, and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Moskalyk and A.M. Alfantazi, Processing of vanadium: A review, Miner. Eng., 16(2003), No. 9, p. 793.

    Article  CAS  Google Scholar 

  2. X.M. Xu, F.Y. Xiong, J.S. Meng, et al., Vanadium-based nano-materials: A promising family for emerging metal-ion batteries, Adv. Funct. Mater., 30(2020), No. 10, art. No. 1904398.

  3. P.W. Shen, Y.X. Che, H.J. Luo, and Y.D. Gu, Inorganic Chemistry Books, Science Press, Beijing, 2008.

    Google Scholar 

  4. S.Z. Yang, Vanadium Metallurgy, Metallurgical Industry Press, Beijing, 2010.

    Google Scholar 

  5. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1–2, p. 116.

    Article  CAS  Google Scholar 

  6. Y.N. Fan, F. Ma, J.S. Liang, et al., Accelerated polysulfide conversion on hierarchical porous vanadium—nitrogen—carbon for advanced lithium-sulfur batteries, Nanoscale, 12(2020), No. 2, p. 584.

    Article  CAS  Google Scholar 

  7. J.M. Zhu, P. Zhao, M.H. Jing, H.J. Wu, and J.J. Li, Preparation of vanadium—nitrogen alloy at low temperature by a coupled electric and thermal field, Vacuum, 195(2022), art. No. 110644.

  8. Y. Shi, C.K. Eze, B.Y. Xiong, et al., Recent development of membrane for vanadium redox flow battery applications: A review, Appl. Energy, 238(2019), p. 202.

    Article  CAS  Google Scholar 

  9. Y.Q. Jiang, M.C. Du, G. Cheng, et al., Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery, J. Energy Chem., 59(2021), p. 706.

    Article  CAS  Google Scholar 

  10. K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, and S. Tasnim, Vanadium redox flow batteries: A comprehensive review, J. Energy Storage, 25(2019), art. No. 100844.

  11. Y.R. Lv, C. Han, Y. Zhu, et al., Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives, J. Mater. Sci. Technol., 75(2021), p. 96.

    Article  Google Scholar 

  12. J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag, J. Hazard. Mater., 336(2017), p. 1.

    Article  CAS  Google Scholar 

  13. M. Li, S.L. Zheng, B. Liu, et al., A clean and efficient method for recovery of vanadium from vanadium slag: Nonsalt roasting and ammonium carbonate leaching processes, Miner. Process. Extr. Metall. Rev., 38(2017), No. 4, p. 228.

    Article  CAS  Google Scholar 

  14. H.Y. Gao, T. Jiang, Y.Z. Xu, J. Wen, and X.X. Xue, Change in phase, microstructure, and physical-chemistry properties of high chromium vanadium slag during microwave calcification-roasting process, Powder Technol., 340(2018), p. 520.

    Article  CAS  Google Scholar 

  15. Z.H. Dong, J. Zhang, and B.J. Yan, A new approach for the comprehensive utilization of vanadium slag, Metall. Mater. Trans. B, 53(2022), No. 4, p. 2198.

    Article  CAS  Google Scholar 

  16. Y. Guo, H.Y. Li, Y.H. Yuan, et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974.

    Article  CAS  Google Scholar 

  17. J.C. Lee, Kurniawan, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production, J. Mater. Res. Technol., 12(2021), p. 343.

    Article  CAS  Google Scholar 

  18. H.Y. Li, C.J. Wang, M.M. Lin, Y. Guo, and B. Xie, Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium—chromium slag, Powder Technol., 360(2020), p. 503.

    Article  CAS  Google Scholar 

  19. Y. Guo, H.Y. Li, S. Shen, C.J. Wang, J. Diao, and B. Xie, Recovery of vanadium from vanadium slag with high phosphorus content via recyclable microemulsion extraction, Hydrometallurgy, 198(2020), art. No. 105509.

  20. J.Y. Xiang, X. Wang, G.S. Pei, Q.Y. Huang, and X.W. Lü, Solid-state reaction of a CaO-V2O5 mixture: A fundamental study for the vanadium extraction process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1462.

    Article  CAS  Google Scholar 

  21. M. Li, B. Liu, S.L. Zheng, et al., A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching, J. Cleaner Prod., 149(2017), p. 206.

    Article  CAS  Google Scholar 

  22. S.Y. Liu, X.B. He, Y.D. Wang, and L.J. Wang, Cleaner and effective extraction and separation of iron from vanadium slag by carbothermic reduction-chlorination-molten salt electrolysis, J. Cleaner Prod., 284(2021), art. No. 124674.

  23. P. Cao, Research on vanadium slag roasted with calcium salt, Iron Steel Vanadium Titanium, 33(2012), No. 1, p. 30.

    CAS  Google Scholar 

  24. J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Cleaner Prod., 170(2018), p. 1089.

    Article  CAS  Google Scholar 

  25. J. Wen, T. Jiang, Y.Z. Xu, J. Cao, and X.X. Xue, Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting—(NH4)2SO4 leaching, J. Ind. Eng. Chem., 71(2019), p. 327.

    Article  CAS  Google Scholar 

  26. Brief Introduction of Xichang Steel Vanadium Co., Ltd. of Panzhihua Iron and Steel Group [2022-06-30], https://www.pzhsteel.com.cn/xcgf/index.php?s=/Home/Article/pg_jianjie/art_bm_id/89/fl/two/msg_id/156.

  27. J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, and X.X. Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 515.

    Article  CAS  Google Scholar 

  28. T.X. Yu, T. Jiang, J. Wen, H.Y. Sun, M. Li, and Y. Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2144.

    Article  CAS  Google Scholar 

  29. J. Wen, T. Jiang, H.Y. Sun, and T.X. Yu, Novel understanding of simultaneous extraction of vanadium and manganese from vanadium slag and low-grade pyrolusite based on selective oxidation—reduction roasting, ACS Sustainable Chem. Eng., 8(2020), No. 15, p. 5927.

    Article  CAS  Google Scholar 

  30. J. Wen, T. Jiang, J.P. Wang, H.Y. Gao, and L.G. Lu, An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings, J. Hazard. Mater., 378(2019), art. No. 120733.

  31. J. Wen, T. Jiang, J.P. Wang, L.G. Lu, and H.Y. Sun, Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and manganese recycle, J. Cleaner Prod., 261(2020), art. No. 121205.

  32. H.R. Yue and X.X. Xue, Generated compounds at the V-slag/CaO diffusion surface and diffusion characteristics of V and Ca in calcium vanadate, J. Hazard. Mater., 393(2020), art. No. 122368.

  33. H.R. Yue and X.X. Xue, Evolution of generated calcium vanadates at different locations in the vicinity of the V2O5/CaO interface with annealing parameters, Metall. Mater. Trans. B, 51(2020), No. 5, p. 2358.

    Article  CAS  Google Scholar 

  34. B.J. Chen, M. Zhou, T. Jiang, and L. Li, Observation of diffusion behavior between Cr2O3 and calcium ferrite based on diffusion couple method at 1373 K, J. Alloys Compd., 802(2019), p. 103.

    Article  CAS  Google Scholar 

  35. B.J. Chen, T. Jiang, M. Zhou, L. Li, J. Wen, and Y.C. Wen, Interdiffusion kinetics and solid-state reaction mechanism between Cr2O3 and calcium ferrite based on diffusion couple method, J. Alloys Compd., 865(2021), art. No. 158754.

  36. Z.S. Ren, X.J. Hu, X.X. Xue, and K. Chou, Solid state reaction studies in Fe3O4-TiO2 system by diffusion couple method, J. Alloys Compd., 580(2013), p. 182.

    Article  CAS  Google Scholar 

  37. J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20.

    Article  CAS  Google Scholar 

  38. J.H. Zhang, W. Zhang, and Z.L. Xue, Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide, Miner. Process. Extr. Metall. Rev., 38(2017), No. 5, p. 265.

    Article  CAS  Google Scholar 

  39. J. Wen, T. Jiang, X.L. Zheng, J.P. Wang, J. Cao, and M. Zhou, Efficient separation of chromium and vanadium by calcification roasting-sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation, Sep. Purif. Technol., 230(2020), art. No. 115881.

  40. H.Y. Sun, Study on Formation Mechanism of Calcium Vanadate/Chromate during Calcification Roasting Process of High-chromium Vanadium Slag [Dissertation], Northeastern University, Shenyang, 2021.

    Google Scholar 

  41. M.F. Jin, G.S. Li, M.S. Chu, and F.M. Shen, Diffusion between MgO and hematite during sintering, Iron Steel, 43(2008), No. 3, p. 10.

    CAS  Google Scholar 

  42. H.Y. Sun, J. Wen, B.J. Chen, T.X. Yu, and T. Jiang, Solid phase reaction and diffusion behavior of V2O5/Cr2O3-CaO system based on calcification roasting of chromium-containing vanadium slag, Iron Steel Vanadium Titanium, 42(2021), No. 3, p. 17.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52174277 and 51874077), the Fundamental Funds for the Central Universities, China (No. N2225032), the China Postdoctoral Science Foundation (No. 2022M720683), and the Postdoctoral Fund of Northeastern University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Additional information

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Sun, H., Jiang, T. et al. Comparison of the interface reaction behaviors of CaO-V2O5 and MnO2-V2O5 solid-state systems based on the diffusion couple method. Int J Miner Metall Mater 30, 834–843 (2023). https://doi.org/10.1007/s12613-022-2564-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2564-7

Keywords

Navigation