Skip to main content
Log in

Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow, circulation flow rate, and mixing time during Ruhrstahl-Heraeus (RH) refining process. Also, a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up, and measurements were carried out to validate the mathematical model. The results show that, with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min−1, the mixing time predicted by the mathematical model agrees well with the measured values. The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations, where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value. In addition, the circulation flow rate was 9 kg·s−1. When the gas blowing nozzle was horizontally rotated by either 30° or 45°, the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle, due to the rotational flow formed in the up-snorkel. Furthermore, the mixing time at the monitoring point 1, 2, and 3 was shortened by around 21.3%, 28.2%, and 12.3%, respectively. With the nozzle angle of 30° and 45°, the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nakanishi, J. Szekely, and C.W. Chang, Experimental and theoretical investigation of mixing phenomena in the RH-vacuum process, Ironmaking Steelmaking, 2(1975), No. 2, p. 115.

    Google Scholar 

  2. K. Shirabe and J. Szekely, A mathematical model of fluid flow and inclusion coalescence in the RH vacuum degassing system, ISIJ Int., 23(1983), No. 6, p. 465.

    Article  CAS  Google Scholar 

  3. R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada, Numerical analysis of molten steel flow in ladle of RH process, ISIJ Int., 29(1989), No. 7, p. 589.

    Article  CAS  Google Scholar 

  4. Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, and S. Takatori, Fluid flow in ladle and its effect on decarburization rate in RH degasser, ISIJ Int., 33(1993), No. 10, p. 1088.

    Article  Google Scholar 

  5. F. Ahrenhold and W. Pluschkell, Mixing phenomena inside the ladle during RH decarburization of steel melts, Steel Res., 70(1999), No. 8–9, p. 314.

    Article  CAS  Google Scholar 

  6. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu, Mixing evaluation in the RH process using mathematical modelling, ISIJ Int., 44(2004), No. 1, p. 82.

    Article  CAS  Google Scholar 

  7. P.A. Kishan and S.K. Dash, Prediction of circulation flow rate in the RH degasser using discrete phase particle modeling, ISIJ Int., 49(2009), No. 4, p. 495.

    Article  CAS  Google Scholar 

  8. J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Mathematical model of the flow, Steel Res. Int., 77(2006), No. 1, p. 32.

    Article  CAS  Google Scholar 

  9. J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Application of the model and results, Steel Res. Int., 77(2006), No. 2, p. 91.

    Article  CAS  Google Scholar 

  10. H.T. Ling, F. Li, L.F. Zhang, and A.N. Conejo, Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+DPM model, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1950.

    Article  CAS  Google Scholar 

  11. G.J. Chen, S.P. He, and Y.G. Li, Investigation of the air-argon-steel-slag flow in an industrial RH reactor with VOF—DPM coupled model, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2176.

    Article  CAS  Google Scholar 

  12. B. Wang, B.H. Zhu, and B. Zhang, Numerical simulation of gas-steel-slag multiphase flow in the vacuum chamber of the RH degasser, JOM, 73(2021), No. 10, p. 2920.

    Article  CAS  Google Scholar 

  13. G.J. Chen and S.P. He, Hydrodynamic modeling of two-phase flow in the industrial Ruhrstahl-Heraeus degasser: Effect of bubble expansion models, Metall. Mater. Trans. B, 53(2022), No. 1, p. 208.

    Article  CAS  Google Scholar 

  14. P. Shao, S. Liu, and X. Miao, CFD-PBM simulation of bubble coalescence and breakup in top blown-rotary agitated reactor, J. Iron Steel Res. Int., 29(2022), No. 2, p. 223.

    Article  CAS  Google Scholar 

  15. Y.G. Park, K.W. Yi, and S.B. Ahn, The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations, ISIJ Int., 41(2001), No. 5, p. 403.

    Article  CAS  Google Scholar 

  16. R.K. Hanna, T. Jones, R. Blake, and M. Millman, Water modelling to aid improvement of degasser performance for production of ultralow carbon interstitial free steels, Ironmaking Steel-making, 21(1994), p. 37.

    CAS  Google Scholar 

  17. C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, and A.M. Cui, Mathematical model of RH blow argon mode affecting: Decarburization rate in ultra-low carbon steel refining, J. Iron Steel Res. Int., 19(2012), No. 5, p. 23.

    Article  Google Scholar 

  18. L.C. Trindade, J.J.M. Peixoto, C.A. Silva, et al., Influence of obstruction at gas-injection nozzles (number and position) in RH degasser process, Metall. Mater. Trans. B, 50(2019), No. 1, p. 578.

    Article  CAS  Google Scholar 

  19. D. Mukherjee, A.K. Shukla, and D.G. Senk, Cold model-based investigations to study the effects of operational and nonoperational parameters on the Ruhrstahl-Heraeus degassing process, Metall. Mater. Trans. B, 48(2017), No. 2, p. 763.

    Article  CAS  Google Scholar 

  20. J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow in a whole degasser during RH refining process, Ironmaking Steelmaking, 32(2005), No. 5, p. 427.

    Article  CAS  Google Scholar 

  21. X.G. Ai, Y.P. Bao, W. Jiang, J.H. Liu, P.H. Li, and T.Q. Li, Periodic flow characteristics during RH vacuum circulation refining, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 17.

    Article  CAS  Google Scholar 

  22. V. Seshadri and S.L.D.S. Costa, Cold model studies of RH degassing process, ISIJ Int., 26(1986), No. 2, p. 133.

    Article  Google Scholar 

  23. Y.H. Li, Y.P. Bao, R. Wang, L.F. Ma, and J.S. Liu, Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 153.

    Article  CAS  Google Scholar 

  24. L. Lin, Y.P. Bao, F. Yue, L.Q. Zhang, and H.L. Ou, Physical model of fluid flow characteristics in RH—TOP vacuum refining process, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 483.

    Article  CAS  Google Scholar 

  25. Q. Wang, S.Y. Jia, F.S. Qi, et al., A CFD study on refractory wear in RH degassing process, ISIJ Int., 60(2020), No. 9, p. 1938.

    Article  CAS  Google Scholar 

  26. B. Li and F. Tsukihashi, Modeling of circulation flow in RH degassing vessel water designed for two- and multi-legs operations, ISIJ Int., 40(2000), No. 12, p. 1203.

    Article  CAS  Google Scholar 

  27. F. Obata, R. Waka, K. Uehara, K. Ito, and Y. Kawata, Circulation characteristics of RH degassing vessel water model with multi-legs, Tetsu-to-Hagane, 86(2000), No. 4, p. 225.

    Article  CAS  Google Scholar 

  28. H. Ling, L. Zhang, and C. Liu, Effect of snorkel shape on the fluid flow during RH degassing process: Mathematical modelling, Ironmaking Steelmaking, 45(2018), No. 2, p. 145.

    Article  CAS  Google Scholar 

  29. T. Kuwabara, K. Umezawa, K.J. Mori, and H. Watanabe, Investigation of decarburization behavior in RH-reactor and its operation improvement, ISIJ Int., 28(1988), No. 4, p. 305.

    Article  CAS  Google Scholar 

  30. Z.F. Ren, Z.G. Luo, F.X. Meng, et al., Physical simulation on molten steel flow characteristics of RH vacuum chamber with arched snorkels, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6525096.

  31. G.J. Chen and S.P. He, Mixing behavior in the RH degasser with bottom gas injection, Vacuum, 130(2016), p. 48.

    Article  CAS  Google Scholar 

  32. R.D. Wang, Y. Jin, and H. Cui, The flow behavior of molten steel in an RH degasser under different ladle bottom stirring processes, Metall. Mater. Trans. B, 53(2022), No. 1, p. 342.

    Article  CAS  Google Scholar 

  33. D.Q. Geng, H. Lei, and J.C. He, Simulation on flow field and mixing phenomenon in RH degasser with ladle bottom blowing, Ironmaking Steelmaking, 39(2012), No. 6, p. 431.

    Article  CAS  Google Scholar 

  34. D.Q. Geng, J.X. Zheng, K. Wang, et al., Simulation on decarburization and inclusion removal process in the Ruhrstahl-Heraeus (RH) process with ladle bottom blowing, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1484.

    Article  CAS  Google Scholar 

  35. S.P. He, G.J. Chen, and C.J. Guo, Investigation of mixing and slag layer behaviours in the RH degasser with bottom gas injection by using the VOF-DPM coupled model, Ironmaking Steel-making, 46(2019), No. 8, p. 771.

    Article  CAS  Google Scholar 

  36. J.F. Dong, C. Feng, R. Zhu, G.S. Wei, J.J. Jiang, and S.Z. Chen, Simulation and application of Ruhrstahl-Heraeus (RH) reactor with bottom-blowing, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2127.

    Article  CAS  Google Scholar 

  37. B. Li, Y. Luan, F. Qi, and H. Huo, Experimental investigation on circulation flow in RH refining system with swirling flow, J. Northeast Univ., 26(2005), No. 8, p. 726.

    Google Scholar 

  38. B.K. Li and F. Tsukihashi, Effect of rotating magnetic field on two-phase flow in RH vacuum degassing vessel, ISIJ Int., 45(2005), No. 7, p. 972.

    Article  CAS  Google Scholar 

  39. D.Q. Geng, H. Lei, and J.C. He, Effect of traveling magnetic field on flow, mixing, decarburization and inclusion removal during RH refining process, ISIJ Int., 52(2012), No. 6, p. 1036.

    Article  CAS  Google Scholar 

  40. F.S. Qi, B.K. Li, and F. Tsukihashi, Behaviour of argon gas bubbles in an electromagnetic driven swirling flow, Steel Res. Int., 78(2007), No. 5, p. 409.

    Article  CAS  Google Scholar 

  41. L.Y. Wang, Z.Y. Liu, M. He, et al., Flow fields control for bubble refinement induced by electromagnetic fields, J. Iron Steel Res. Int., 29(2022), No. 4, p. 575.

    Article  Google Scholar 

  42. W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd eds., CRC Press, Florida, 2012, p. 5.

    Google Scholar 

  43. J. Han, X.D. Wang, and D.C. Ba, Coordinated analysis of multiple factors of argon blowing parameters on the effect of circulation flow rate in RH vacuum refining process, Vacuum, 109(2014), p. 68.

    Article  CAS  Google Scholar 

  44. COMSOL, CFD Module User’s Guide, Release 5.3, SWE, 2017, p. 44.

  45. B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, New York, 1972.

    Google Scholar 

  46. COMSOL, Particle Tracing Module User’s Guide, Release 5.6, SWE, 2020, p. 267.

  47. Y. Luo, C. Liu, Y. Ren, and L.F. Zhang, Modeling on the fluid flow and mixing phenomena in a RH steel degasser with oval down-leg snorkel, Steel Res. Int., 89(2018), No. 12, art. No. 1800048.

  48. L. Schiller and Z.A. Naumann, A drag coefficient correlation, Zeitschrift Des Vereins Deutscher Ingenieure, 77(1935), p. 318.

    Google Scholar 

  49. M. Sano and K. Mori, Dynamics of bubble swarms in liquid metals, Trans. Iron Steel Inst. Jpn, 20(1980), No. 10, p. 668.

    Article  Google Scholar 

  50. A. Ghaffari and A. Rahbar-Kelishami, MD simulation and evaluation of the self-diffusion coefficients in aqueous NaCl solutions at different temperatures and concentrations, J. Mol. Liq., 187(2013), p. 238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51704062) and the Fundamental Research Funds for the Central Universities, China (No. N2025019). Jiahao Wang wishes to thank the comments and discussions on the mathematical model from Dr. Xiaobin Zhou from Anhui University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyuan Ni or Ying Li.

Additional information

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ni, P., Chen, C. et al. Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process. Int J Miner Metall Mater 30, 844–856 (2023). https://doi.org/10.1007/s12613-022-2558-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2558-5

Keywords

Navigation