Skip to main content

Advertisement

Log in

Influence of Zr and Mn additions on microstructure and properties of Mg—2.5wt%Cu—Xwt%Zn (X = 2.5, 5 and 6.5) alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This work studied the effects of adding Zr and Mn in amounts less than 1wt% on the microstructure, mechanical properties, casting properties, and corrosion resistance of Mg—Zn—Cu alloys containing 2.5wt% Cu and 2.5wt%—6.5wt% Zn. The hardness and electrical conductivity measurements were used to find an optimal heat treatment schedule with the best mechanical properties. It has been established that Zr significantly increases the yield strength of the alloys due to a strong grain refinement effect. However, the presence of Mn and Zr has a detrimental effect on alloy’s elongation at fracture. It was shown that the precipitation of the Mg2Cu cathodic phase in the alloy structure negatively affects the corrosion behavior. Nevertheless, the addition of Mn decreases the corrosion rate of the investigated alloys. The best combination of the mechanical, casting, and corrosion properties were achieved in the alloys containing 2.5wt% Cu and 5wt% Zn. However, the Mn or Zr addition can improve the properties of the alloys; for example, the addition of Mn or Zr increases the fluidity of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.U. Kainer, Magnesium Alloys and Their Applications, Wiley-VCH Verlag GmbH, Weinheim, 2000.

    Book  Google Scholar 

  2. A.A. Luo, Magnesium casting technology for structural applications, J. Magnes. Alloys, 1(2013), No. 1, p. 2.

    Article  CAS  Google Scholar 

  3. H.C. Pan, Y.P. Ren, H. Fu, H. Zhao, L.Q. Wang, X.Y. Meng, and G.W. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Compd., 663(2016), p. 321.

    Article  CAS  Google Scholar 

  4. S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnes. Alloys, 5(2017), No. 3, p. 239.

    Article  CAS  Google Scholar 

  5. H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park, Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy, Mater. Sci. Eng. A, 559(2013), p. 798.

    Article  CAS  Google Scholar 

  6. X.H. Chen, L.Z. Liu, F.S. Pan, J.J. Mao, X.Y. Xu, and T. Yan, Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys, Mater. Sci. Eng. B, 197(2015), p. 67.

    Article  CAS  Google Scholar 

  7. Y. Zhang, X.F. Huang, Y. Ma, T.J. Chen, Y.D. Li, and Y. Hao, Effects of Cu addition on microstructure and mechanical properties of as-cast Mg-6Zn magnesium alloy, China Foundry, 14(2017), No. 4, p. 251.

    Article  Google Scholar 

  8. B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.

    Article  Google Scholar 

  9. J. Buha, Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy, Mater. Sci. Eng. A, 489(2008), No. 1–2, p. 127.

    Article  CAS  Google Scholar 

  10. L.G. Xu, X.X. Li, J. Ye, X. Ji, H. Qiu, J. Luo, and H.G. Yang, Thermodynamic optimization design of casting Mg-Zn-Cu alloy, Adv. Mater. Res., 852(2014), p. 183.

    Article  CAS  Google Scholar 

  11. I.J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Butterworth-Heinemann, Oxford, 2005.

    Google Scholar 

  12. M.M. Avedesian and H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, ASM International, Materials Park, OH, 1999.

    Google Scholar 

  13. Y.W. Song, E.H. Han, D.Y. Shan, C.D. Yim, and B.S. You, The effect of Zn concentration on the corrosion behavior of Mg—xZn alloys, Corros. Sci., 65(2012), p. 322.

    Article  CAS  Google Scholar 

  14. C. Liu, X.K. Fu, H.B. Pan, P. Wan, L. Wang, L.L. Tan, K.H. Wang, Y. Zhao, K. Yang, and P.K. Chu, Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects, Sci. Rep., 6(2016), art. No. 27374.

  15. G.L. Makar and J. Kruger, Corrosion of magnesium, Int. Mater. Rev., 38(1993), No. 3, p. 138.

    Article  CAS  Google Scholar 

  16. G.L. Song, Control of biodegradation of biocompatable magnesium alloys, Corros. Sci., 49(2007), No. 4, p. 1696.

    Article  CAS  Google Scholar 

  17. O. Lunder, T.K. Aune, and K. Nisancioglu, Effect of Mn additions on the corrosion behavior of mould-cast magnesium ASTM AZ91, Corrosion, 43(1987), No. 5, p. 291.

    Article  CAS  Google Scholar 

  18. K. Gusieva, C.H.J. Davies, J.R. Scully, and N. Birbilis, Corrosion of magnesium alloys: The role of alloying, Int. Mater. Rev., 60(2015), No. 3, p. 169.

    Article  CAS  Google Scholar 

  19. H.M. Zhu, C.P. Luo, J.W. Liu, and D.L. Jiao, Effects of Cu addition on microstructure and mechanical properties of as-cast magnesium alloy ZK60, Trans. Nonferrous Met. Soc. China, 24(2014), No. 3, p. 605.

    Article  CAS  Google Scholar 

  20. D.S. Gandel, M.A. Easton, M.A. Gibson, T. Abbott, and N. Birbilis, The influence of zirconium additions on the corrosion of magnesium, Corros. Sci., 81(2014), p. 27.

    Article  CAS  Google Scholar 

  21. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26(2002), No. 2, p. 273.

    Article  CAS  Google Scholar 

  22. Thermo-Calc Software, TCMG4 Magnesium Alloys Databases Version 4, Thermo-Calc Software, Stockholm [2020-01-10]. https://thermocalc.com/products/databases/magnesium-based-alloys/

  23. A.V. Koltygin, V.E. Bazhenov, N.V. Letyagin, and V.D. Belov, The influence of composition and heat treatment on the phase composition and mechanical properties of ML19 magnesium alloy, Russ. J. Non-Ferrous Met., 59(2018), No. 1, p. 32.

    Article  Google Scholar 

  24. V.E. Bazhenov, A.V. Petrova, and A.V. Koltygin, Simulation of fluidity and misrun prediction for the casting of 356.0 aluminum alloy into sand molds, Int. J. Metalcast., 12(2018), No. 3, p. 514.

    Article  CAS  Google Scholar 

  25. A.V. Koltygin, V.E. Bazhenov, E.A. Belova, and A.A. Nikitina, Development of a magnesium alloy with good casting characteristics on the basis of Mg-Al-Ca-Mn system, having Mg-Al2Ca structure, J. Magnes. Alloys, 1(2013), No. 3, p. 224.

    Article  CAS  Google Scholar 

  26. ASTM International, ASTM Standard G102–89: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken, 2015.

    Google Scholar 

  27. M. Qian, D.H. StJohn, and M.T. Frost, Characteristic zirconium-rich coring structures in Mg-Zr alloys, Scripta Mater., 46(2002), No. 9, p. 649.

    Article  Google Scholar 

  28. L. Yang, X.R. Zhou, M. Curioni, S. Pawar, H. Liu, Z.Y. Fan, G. Scamans, and G. Thompson, Corrosion behavior of pure magnesium with low iron content in 3.5 wt% NaCl solution, J. Electrochem. Soc., 162(2015), No. 7, p. C362.

    Article  CAS  Google Scholar 

  29. J. Gjønnes and C.J. Simensen, An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy, Acta Metall., 18(1970), No. 8, p. 881.

    Article  Google Scholar 

  30. G.A. Song, J.S. Lee, J.S. Park, N.S. Lee, W.H. Lee, and K.B. Kim, Mechanical properties of large-scale Mg-Cu-Zn ultrafine eutectic composites, J. Alloys Compd., 481(2009), No. 1–2, p. 135.

    Article  CAS  Google Scholar 

  31. J. Buha and T. Ohkubo, Natural aging in Mg-Zn(-Cu) alloys, Metall. Mater. Trans. A, 39(2008), No. 9, p. 2259.

    Article  CAS  Google Scholar 

  32. J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium-manganese alloys: Particle pinning, Mater. Sci. Eng. A, 528(2011), No. 12, p. 4239.

    Article  CAS  Google Scholar 

  33. G.S. Peng, Y. Wang, and Z. Fan, Competitive heterogeneous nucleation between Zr and MgO particles in commercial purity magnesium, Metall. Mater. Trans. A, 49(2018), No. 6, p. 2182.

    Article  CAS  Google Scholar 

  34. V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Y.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, and K.V. Malyutin, Development of Mg-Zn-Y-Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567.

    Article  CAS  Google Scholar 

  35. ASM Handbook Committee, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, Vol. 2, ASM International, Materials Park, OH, 1990.

    Google Scholar 

  36. M. Qian and A. Das, Grain refinement of magnesium alloys by zirconium: Formation of equiaxed grains, Scripta Mater., 54(2006), No. 5, p. 881.

    Article  CAS  Google Scholar 

  37. D. Vinotha, K. Raghukandan, U.T.S. Pillai, and B.C. Pai, Grain refining mechanisms in magnesium alloys—An overview, Trans. Indian Inst. Met., 62(2009), No. 6, p. 521.

    Article  CAS  Google Scholar 

  38. Y.C. Lee, A.K. Dahle, and D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A, 31(2000), No. 11, p. 2895.

    Article  Google Scholar 

  39. D.J. Lloyd and S.A. Court, Influence of grain size on tensile properties of Al-Mg alloys, Mater. Sci. Technol., 19(2003), No. 10, p. 1349.

    Article  CAS  Google Scholar 

  40. A.K. Dahle, P.A. Tøndel, C.J. Paradies, and L. Arnberg, Effect of grain refinement on the fluidity of two commercial Al-Si foundry alloys, Metall. Mater. Trans. A, 27(1996), No. 8, p. 2305.

    Article  Google Scholar 

  41. K.R. Ravi, R.M. Pillai, K.R. Amaranathan, B.C. Pai, and M. Chakraborty, Fluidity of aluminum alloys and composites: A review, J. Alloys Compd., 456(2008), No. 1–2, p. 201.

    Article  CAS  Google Scholar 

  42. H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800.

    Article  CAS  Google Scholar 

  43. P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support form the Ministry of Science and Higher Education of the Russian Federation in the framework of MegaGrant (No. 220-7868-7477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bazhenov.

Ethics declarations

The authors report no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltygin, A.V., Bazhenov, V.E., Plisetskaya, I.V. et al. Influence of Zr and Mn additions on microstructure and properties of Mg—2.5wt%Cu—Xwt%Zn (X = 2.5, 5 and 6.5) alloys. Int J Miner Metall Mater 29, 1733–1745 (2022). https://doi.org/10.1007/s12613-021-2369-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2369-0

Keywords

Navigation