Skip to main content
Log in

Microstructure, mechanical properties and deformation mechanisms of an Al-Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Al—Mg alloys are an important class of non-heat treatable alloys in which Mg solute and grain size play essential role in their mechanical properties and plastic deformation behaviors. In this work, a cyclical continuous expanded extrusion and drawing (CCEED) process was proposed and implemented on an Al—3Mg alloy to introduce large plastic deformation. The results showed that the continuous expanded extrusion mainly improved the ductility, while the cold drawing enhanced the strength of the alloy. With the increased processing CCEED passes, the multi-pass cross shear deformation mechanism progressively improved the homogeneity of the hardness distributions and refined grain size. Continuous dynamic recrystallization played an important role in the grain refinement of the processed Al—3Mg alloy rods. Besides, the microstructural evolution was basically influenced by the special thermomechanical deformation conditions during the CCEED process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2011.

    Google Scholar 

  2. Y. Estrin and A. Vinogradov, Extreme grain refinement by severe plastic deformation: A wealth of challenging science, Acta Mater., 61(2013), No. 3, p. 782.

    Article  CAS  Google Scholar 

  3. M. Kuzmina, D. Ponge, and D. Raabe, Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: Example of a 9 wt.% medium Mn steel, Acta Mater., 86(2015), p. 182.

    Article  CAS  Google Scholar 

  4. C.Q. Huang, J.X. Liu, and X.D. Jia, Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1140.

    Article  CAS  Google Scholar 

  5. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A, 168(1993), No. 2, p. 141.

    Article  Google Scholar 

  6. I. Sabirov, N.A. Enikeev, M.Y. Murashkin, and R.Z. Valiev, Bulk Nanostructured Materials with Multifunctional Properties, Springer, Cham, 2015.

    Book  Google Scholar 

  7. G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation Methods: Processing and Properties, Elsevier, 2018.

  8. R. Kalsar, D. Yadav, A. Sharma, H.G. Brokmeier, J. May, H.W. Höppel, W. Skrotzki, and S. Suwas, Effect of Mg content on microstructure, texture and strength of severely equal channel angular pressed aluminium-magnesium alloys, Mater. Sci. Eng. A, 797(2020), art. No. 140088.

  9. T. Radetić, M. Popović, E. Romhanji, and B. Verlinden, The effect of ECAP and Cu addition on the aging response and grain substructure evolution in an Al—4.4wt.% Mg alloy, Mater. Sci. Eng. A, 527(2010), No. 3, p. 634.

    Article  Google Scholar 

  10. L. Romero-Reséndiz, A. Flores-Rivera, I.A. Figueroa, C. Braham, C. Reyes-Ruiz, I. Alfonso, and G. González, Effect of the initial ECAP passes on crystal texture and residual stresses of 5083 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 801.

    Article  Google Scholar 

  11. Z.J. Yang, K.K. Wang, and Y. Yang, Optimization of ECAP—RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 792.

    Article  CAS  Google Scholar 

  12. A. Deschamps, F. de Geuser, Z. Horita, S. Lee, and G. Renou, Precipitation kinetics in a severely plastically deformed 7075 aluminium alloy, Acta Mater., 66(2014), p. 105.

    Article  CAS  Google Scholar 

  13. P. Bazarnik, Y. Huang, M. Lewandowska, and T.G. Langdon, Structural impact on the Hall—Petch relationship in an Al—5Mg alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 626(2015), p. 9.

    Article  CAS  Google Scholar 

  14. H.S. Liu, B. Zhang, and G.P. Zhang, Microstructures and mechanical properties of Al/Mg alloy multilayered composites produced by accumulative roll bonding, J. Mater. Sci. Technol., 27(2011), No. 1, p. 15.

    Article  Google Scholar 

  15. H. Sheikh, Role of shear banding on the microtexture of an Al—Mg alloy processed by hot/high strain rate accumulative roll bonding, Scripta Mater., 64(2011), No. 6, p. 556.

    Article  CAS  Google Scholar 

  16. X.H. Yang, D.G. Wang, Z.G. Wu, J.H. Yi, S. Ni, Y. Du, and M. Song, A coupled EBSD/TEM study of the microstructural evolution of multi-axial compressed pure Al and Al—Mg alloy, Mater. Sci. Eng. A, 658(2016), p. 16.

    Article  CAS  Google Scholar 

  17. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of superior properties in bulk NanoSPD materials, Mater. Res. Lett., 4(2016), No. 1, p. 1.

    Article  CAS  Google Scholar 

  18. W.L. Gao, J. Xu, J. Teng, and Z. Lu, Microstructure characteristics and mechanical properties of a 2A66 Al—Li alloy processed by continuous repetitive upsetting and extrusion, J. Mater. Res., 31(2016), No. 16, p. 2506.

    Article  CAS  Google Scholar 

  19. H. S. Chu, K. S. Liu, and J. W. Yeh, An in situ composite of Al (graphite, Al4C3) produced by reciprocating extrusion, Mater. Sci. Eng. A, 277(2000), No. 1–2, p. 25.

    Article  Google Scholar 

  20. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater., 49(2001), No. 9, p. 1497.

    Article  CAS  Google Scholar 

  21. H. Utsunomiya, K. Hatsuda, T. Sakai, and Y. Saito, Continuous grain refinement of aluminum strip by conshearing, Mater. Sci. Eng. A, 372(2004), No. 1–2, p. 199.

    Article  Google Scholar 

  22. M. Murashkin, A. Medvedev, V. Kazykhanov, A. Krokhin, G. Raab, N. Enikeev, and R.Z. Valiev, Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP—Conform, Metals, 5(2015), No. 4, p. 2148.

    Article  Google Scholar 

  23. C. Etherington, Conform—A new concept for the continuous extrusion forming of metals, J. Eng. Ind., 96(1974), No. 3, p. 893.

    Article  Google Scholar 

  24. D.S. Peng, B.Q. Yao, and T.Y. Zuo, The experimental simulation of deformation behavior of metals in the conform process, J. Mater. Process. Technol., 31(1992), No. 1–2, p. 85.

    Article  Google Scholar 

  25. H. Zhang, Q.Q. Yan, and L.X. Li, Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process, Mater. Sci. Eng. A, 486(2008), No. 1–2, p. 295.

    Article  Google Scholar 

  26. G.J. Raab, R.Z. Valiev, T.C. Lowe and Y.T. Zhu, Continuous processing of ultrafine grained Al by ECAP—Conform, Mater. Sci. Eng. A, 382(2004), No. 1–2, p. 30.

    Article  Google Scholar 

  27. J.F. Derakhshan, M.H. Parsa, and H.R. Jafarian, Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP—Conform process, Mater. Sci. Eng. A, 747(2019), p. 120.

    Article  CAS  Google Scholar 

  28. C. Xu, S. Schroeder, P.B. Berbon, and T.G. Langdon, Principles of ECAP—Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy, Acta Mater., 58(2010), No. 4, p. 1379.

    Article  CAS  Google Scholar 

  29. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716.

    Article  Google Scholar 

  30. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev, Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater. Sci. Eng. A, 303(2001), No. 1–2, p. 82.

    Article  Google Scholar 

  31. K.T. Park, H.J. Lee, C.S. Lee, W.J. Nam, and D.H. Shin, Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing, Scripta. Mater., 51(2004), No. 6, p. 479.

    Article  CAS  Google Scholar 

  32. K.T. Park, H.J. Lee, C.S. Lee, and D.H. Shin, Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al—Mg alloy at 723 K, Mater. Sci. Eng. A, 393(2005), No. 1–2, p. 118.

    Article  Google Scholar 

  33. R.Q. Lu, S.W. Zheng, J. Teng, J.M. Hu, D.F. Fu, J.C. Chen, G.D. Zhao, F.L. Jiang, and H. Zhang, Microstructure, mechanical properties and deformation characteristics of Al—Mg—Si alloys processed by a continuous expansion extrusion approach, J. Mater. Sci. Technol., 80(2021), p. 150.

    Article  Google Scholar 

  34. F.L. Jiang, S. Takaki, T. Masumura, R. Uemori, H. Zhang, and T. Tsuchiyama, Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling, Int. J. Plast., 129(2020), art. No. 102700.

  35. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia, Microstructural evolution during recovery and recrystallization of a nanocrystalline Al—Mg alloy prepared by cryogenic ball milling, Acta Mater., 51(2003), No. 10, p. 2777.

    Article  CAS  Google Scholar 

  36. A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, and S. Suwas, Hot deformation behaviour of Mo-TZM and understanding the restoration processes involved, Acta Mater., 164(2019), p. 153.

    Article  CAS  Google Scholar 

  37. R. Kapoor, G.B. Reddy, and A. Sarkar, Discontinuous dynamic recrystallization in α-Zr, Mater. Sci. Eng. A, 718(2018), p. 104.

    Article  CAS  Google Scholar 

  38. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130.

    Article  CAS  Google Scholar 

  39. D.G. Morris and M.A. Muñoz-Morris, Microstructure of severely deformed Al—3Mg and its evolution during annealing, Acta Mater., 50(2002), No. 16, p. 4047.

    Article  CAS  Google Scholar 

  40. K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548.

    Article  CAS  Google Scholar 

  41. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Continuous dynamic recrystallization in an Al—L—Mg—Sc alloy during equal-channel angular extrusion, Mater. Sci. Eng. A, 396(2005), No. 1–2, p. 341.

    Article  Google Scholar 

  42. N. Su, R.G. Guan, X. Wang, Y.X. Wang, W.S. Jiang, and H.N. Liu, Grain refinement in an Al—Er alloy during accumulative continuous extrusion forming, J. Alloys Compd., 680(2016), p. 283.

    Article  CAS  Google Scholar 

  43. Y.X. Wang, R.G. Guan, D.W. Hou, Y. Zhang, W.S. Jiang, and H.N. Liu, The effects of eutectic silicon on grain refinement in an Al—Si alloy processed by accumulative continuous extrusion forming, J. Mater. Sci., 52(2017), No. 2, p. 1137.

    Article  CAS  Google Scholar 

  44. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Amsterdam, Elsevier, 2004.

    Google Scholar 

  45. Y.F. Shen, R.G. Guan, Z.Y. Zhao, and R.D.K. Misra, Ultrafinegrained Al—0.2Sc—0.1Zr alloy: The mechanistic contribution of nano-sized precipitates on grain refinement during the novel process of accumulative continuous extrusion, Acta Mater., 100(2015), p. 247.

    Article  CAS  Google Scholar 

  46. Z. Aretxabaleta, B. Pereda, and B. López, Analysis of the effect of Al on the static softening kinetics of C—Mn steels using a physically based model, Metall. Mater. Trans. A, 45(2014), No. 2, p. 934.

    Article  CAS  Google Scholar 

  47. M.K. Rehman and H.S. Zurob, A novel approach to model static recrystallization of austenite during hot rolling of Nb microalloyed steel. part I: Precipitate-free case, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1862.

    Article  CAS  Google Scholar 

  48. J.W. Cahn, The impurity-drag effect in grain boundary motion, Acta Metall., 10(1962), No. 9, p. 789.

    Article  CAS  Google Scholar 

  49. E.A. Simielli, S. Yue, and J.J. Jonas, Recrystallization kinetics of microalloyed steels deformed in the intercritical region, Metall. Trans. A, 23(1992), No. 2, p. 597.

    Article  Google Scholar 

  50. A. Lens, C. Maurice, and J.H. Driver, Grain boundary mobilities during recrystallization of Al—Mn alloys as measured by in situ annealing experiments, Mater. Sci. Eng. A, 403(2005), No. 1–2, p. 144.

    Article  Google Scholar 

  51. J. Tang, F.L. Jiang, C.H. Luo, G.W. Bo, K.Y. Chen, J. Teng, D.F. Fu, and H. Zhang, Integrated physically based modeling for the multiple static softening mechanisms following multistage hot deformation in Al—Zn—Mg—Cu alloys, Int. J. Plast., 134(2020), art. No. 102809.

  52. Y. Du, Y.A. Chang, B.Y. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Yuan, Y. Liu, Y.H. He, and F.Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation, Mater. Sci. Eng. A, 363(2003), No. 1–2, p. 140.

    Article  Google Scholar 

  53. K. Lücke and K. Detert, A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities, Acta Metall., 5(1957), No. 11, p. 628.

    Article  Google Scholar 

  54. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon, Oxford, 1982.

    Google Scholar 

  55. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, and K. Tsuzaki, Grain refinement in a commercial Al—Mg—Sc alloy under hot ECAP conditions, Mater. Sci. Eng. A, 444(2007), No. 1–2, p. 18.

    Article  Google Scholar 

  56. C. Xu, Z. Horita, and T.G. Langdon, The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion, Acta Mater., 56(2008), No. 18, p. 5168.

    Article  CAS  Google Scholar 

  57. L.S. To’th, A. Molinari, and Y. Estrin, Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model, J. Eng. Mater. Technol., 124(2002), No. 1, p. 71.

    Article  Google Scholar 

  58. P.W.J. McKenzie, R. Lapovok, and Y. Estrin, The influence of back pressure on ECAP processed AA 6016: Modeling and experiment, Acta Mater., 55(2007), No. 9, p. 2985.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774124), the Hunan Provincial Natural Science Foundation of China (No. 2019JJ40017), the Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province, China (No. 2019GK4045), and the Graduate Training and Innovation Practice Base of Hunan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingfa Fu or Jie Teng.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Zhang, L., Zheng, S. et al. Microstructure, mechanical properties and deformation mechanisms of an Al-Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach. Int J Miner Metall Mater 29, 108–118 (2022). https://doi.org/10.1007/s12613-021-2342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2342-y

Keywords

Navigation