Skip to main content

Advertisement

Log in

The modulation of the discharge plateau of benzoquinone for sodium-ion batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

p-Benzoquinone (BQ) is a promising candidate for next-generation sodium-ion batteries (SIBs) because of its high theoretical specific capacity, good reaction reversibility, and high resource availability. However, practical application of BQ faces many challenges, such as a low discharge plateau (∼2.7 V) as cathode material or a high discharge plateau as anode material compared with inorganic materials for SIBs and high solubility in organic electrolytes, resulting in low power and energy densities. Here, tetrahydroxybenzoquinone tetrasodium salt (Na4C6O6) is synthesized through a simple neutralization reaction at low temperatures. The four −ONa electron-donating groups introduced on the structure of BQ greatly lower the discharge plateau by over 1.4 V from ∼2.70 V to ∼1.26 V, which can change BQ from cathode to anode material for SIBs. At the same time, the addition of four −ONa hydrophilic groups inhibits the dissolution of BQ in the organic electrolyte to a certain extent. As a result, Na4C6O6 as the anode displays a moderate discharge capacity and cycling performance at an average work voltage of ∼1.26 V versus Na/Na+. When evaluated as a Na-ion full cell (NIFC), a Na3V2(PO4)3 ‖ Na4C6O6 NIFC reveals a moderate discharge capacity and an average discharge plateau of ∼1.4 V. This research offers a new molecular structure design strategy for reducing the discharge plateau and simultaneously restraining the dissolution of organic electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yi, P.C. Liang, X.Y. Liu, K. Wu, Y.Y. Liu, Y.G. Wang, Y.Y. Xia, and J.J. Zhang, Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries, Energy Environ. Sci., 11(2018), No. 11, p. 3075.

    Article  CAS  Google Scholar 

  2. Y.Q. Tang, X. Liu, X.B. Huang, X. Ding, S.B. Zhou, and Y.D. Chen, Synthesis and electrochemical properties of Li2FeSiO4/C/Ag composite as a cathode material for Li-ion battery, J. Cent. South Univ., 26(2019), No. 6, p. 1443.

    Article  CAS  Google Scholar 

  3. Z.M. Zheng, H.H. Wu, H.X. Chen, Y. Cheng, Q.B. Zhang, Q.S. Xie, L.S. Wang, K.L. Zhang, M.S. Wang, D.L. Peng, and X.C. Zeng, Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries, Nanoscale, 10(2018), No. 47, p. 22203.

    Article  CAS  Google Scholar 

  4. Q.H. Chen, Y. Cheng, H.D. Liu, Q.B. Zhang, V. Petrova, H.X. Chen, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Hierarchical design of Mn2P nanoparticles embedded in N, P-codoped porous carbon nanosheets enables highly durable lithium storage, ACS Appl. Mater. Interfaces, 12(2020), No. 32, p. 36247.

    Article  CAS  Google Scholar 

  5. F. Jin, J. Li, C.J. Hu, H.C. Dong, P. Chen, Y.B. Shen, and L.W. Chen, High performance solid-state battery with integrated cathode and electrolyte, ACTA Phys. Chim. Sin., 35(2019), No. 12, p. 1399.

    Article  CAS  Google Scholar 

  6. K. Chayambuka, G. Mulder, D.L. Danilov, and P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed, Adv. Energy Mater., 8(2018), No. 16, art. No. 1800079.

  7. Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545.

    Article  CAS  Google Scholar 

  8. X.J. Nie, X.T. Xi, Y. Yang, Q.L. Ning, J.Z. Guo, M.Y. Wang, Z.Y. Gu, and X.L. Wu, Recycled LiMn2O4 from the spent lithium ion batteries as cathode material for sodium ion batteries: Electrochemical properties, structural evolution and electrode kinetics, Electrochim. Acta, 320(2019), art. No. 134626.

  9. Z.Y. Gu, J.Z. Guo, Z.H. Sun, X.X. Zhao, W.H. Li, X. Yang, H.J. Liang, C.D. Zhao, and X.L. Wu, Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries, Sci. Bull., 65(2020), No. 9, p. 702.

    Article  CAS  Google Scholar 

  10. X.H. Rui, W.P. Sun, C. Wu, Y. Yu, and Q.Y. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network, Adv. Mater., 27(2015), No. 42, p. 6670.

    Article  CAS  Google Scholar 

  11. Z.G. Liu, Y.Y. Hu, M.T. Dunstan, H. Huo, X.G. Hao, H. Zou, G.M. Zhong, Y. Yang, and C.P. Grey, Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3, Chem. Mater., 26(2014), No. 8, p. 2513.

    Article  CAS  Google Scholar 

  12. F.X. Xie, L. Zhang, D.W. Su, M. Jaroniec, and S.Z. Qiao, Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance, Adv. Mater., 29(2017), No. 24, art. No. 1700989.

  13. M.Z. Chen, Q.N. Liu, S.W. Wang, E.H. Wang, X.D. Guo, and S.L. Chou, High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies, Adv. Energy Mater., 9(2019), No. 14, art. No. 1803609.

  14. X. Yan, C.Y. Fan, X. Yang, Y.Y. Wang, B.H. Hou, W.L. Pang, and X.L. Wu, A cation/anion-dually active metal-organic complex with 2D lamellar structure as anode material for Li/Na-ion batteries, Mater. Today Energy, 13(2019), p. 302.

    Article  Google Scholar 

  15. X. Yan, H. Ye, X.L. Wu, Y.P. Zheng, F. Wan, M.K. Liu, X.H. Zhang, J.P. Zhang, and Y.G. Guo, Three-dimensional carbon nanotube networks enhanced sodium trimesic: A new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies, J. Mater. Chem. A, 5(2017), No. 32, p. 16622.

    Article  CAS  Google Scholar 

  16. Y.W. Wu, R.H. Zeng, J.M. Nan, D. Shu, Y.C. Qiu, and S.L. Chou, Quinone electrode materials for rechargeable lithium/sodium ion batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1700278.

  17. Z.P. Song, Y.M. Qian, T. Zhang, M. Otani, and H.S. Zhou, Poly(benzoquinonyl sulfide) as a high-energy organic cathode for rechargeable Li and Na batteries, Adv. Sci., 2(2015), No. 9, art. No. 1500124.

  18. Z.P. Song, Y.M. Qian, X.Z. Liu, T. Zhang, Y.B. Zhu, H.J. Yu, M. Otani, and H.S. Zhou, A quinone-based oligomeric lithium salt for superior Li-organic batteries, Energy Environ. Sci., 7(2014), No. 12, p. 4077.

    Article  CAS  Google Scholar 

  19. S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, and U.S. Schubert, Polymer-based organic batteries, Chem. Rev., 116(2016), No. 16, p. 9438.

    Article  CAS  Google Scholar 

  20. M.E. Bhosale, S.D. Chae, J.M. Kim, and J.Y. Choi, Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries, J. Mater. Chem. A, 6(2018), No. 41, p. 19885.

    Article  CAS  Google Scholar 

  21. J.X. Yang, Y.Q. Shi, P.F. Sun, P.X. Xiong, and Y.H. Xu, Optimization of molecular structure and electrode architecture of anthraquinone-containing polymer cathode for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 45, p. 42305.

    Article  CAS  Google Scholar 

  22. J.E. Kwon, C.S. Hyun, Y.J. Ryu, J. Lee, D.J. Min, M.J. Park, B.K. An, and S.Y. Park, Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries, J. Mater. Chem. A, 6(2018), No. 7, p. 3134.

    Article  CAS  Google Scholar 

  23. W.W. Huang, Z.Q. Zhu, L.J. Wang, S.W. Wang, H. Li, Z.L. Tao, J.F. Shi, L.H. Guan, and J. Chen, Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte, Angew. Chem. Int. Ed., 52(2013), No. 35, p. 9162.

    Article  CAS  Google Scholar 

  24. Z.Q. Zhu, M.L. Hong, D.S. Guo, J.F. Shi, Z.L. Tao, and J. Chen, All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode, J. Am. Chem. Soc., 136(2014), No. 47, p. 16461.

    Article  CAS  Google Scholar 

  25. W.W. Huang, X.Q. Zhang, S.B. Zheng, W.J. Zhou, J. Xie, Z.N. Yang, and Q.C. Zhang, Calix[6]quinone as high-performance cathode for lithium-ion battery, Sci. China Mater., 63(2020), No. 3, p. 339.

    Article  CAS  Google Scholar 

  26. H.Y. Chen, M. Armand, M. Courty, M. Jiang, C.P. Grey, F. Dolhem, J.M. Tarascon, and P. Poizot, Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery, J. Am. Chem. Soc., 131(2009), No. 25, p. 8984.

    Article  CAS  Google Scholar 

  27. T. Yokoji, Y. Kameyama, S. Sakaida, N. Maruyama, M. Satoh, and H. Matsubara, Steric effects on the cyclability of benzoquinone-type organic cathode active materials for rechargeable batteries, Chem. Lett., 44(2015), No. 12, p. 1726.

    Article  CAS  Google Scholar 

  28. M. Yao, H. Senoh, S.I. Yamazaki, Z. Siroma, T. Sakai, and K. Yasuda, High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries, J. Power Sources, 195(2010), No. 24, p. 8336.

    Article  CAS  Google Scholar 

  29. A. Jouhara, N. Dupré, A.C. Gaillot, D. Guyomard, F. Dolhem, and P. Poizot, Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution, Nat. Commun., 9(2018), art. No. 4401.

  30. A.E. Lakraychi, E. Deunf, K. Fahsi, P. Jimenez, J.P. Bonnet, F. Djedaini-Pilard, M. Bécuwe, P. Poizot, and F. Dolhem, An air-stable lithiated cathode material based on a 1, 4-benzenedisulf-onate backbone for organic Li-ion batteries, J. Mater. Chem. A, 6(2018), No. 39, p. 19182.

    Article  CAS  Google Scholar 

  31. T. Yokoji, H. Matsubara, and M. Satoh, Rechargeable organic lithium-ion batteries using electron-deficient benzoquinones as positive-electrode materials with high discharge voltages, J. Mater. Chem. A, 2(2014), No. 45, p. 19347.

    Article  CAS  Google Scholar 

  32. Y. Lu, Q. Zhao, L.C. Miao, Z.L. Tao, Z.Q. Niu, and J. Chen, Flexible and free-standing organic/carbon nanotubes hybrid films as cathode for rechargeable lithium-ion batteries, J. Phys. Chem. C, 121(2017), No. 27, p. 14498.

    Article  CAS  Google Scholar 

  33. H. Kim, J.E. Kwon, B. Lee, J. Hong, M. Lee, S.Y. Park, and K. Kang, High energy organic cathode for sodium rechargeable batteries, Chem. Mater., 27(2015), No. 21, p. 7258.

    Article  CAS  Google Scholar 

  34. J. Lee, H. Kim, and M.J. Park, Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives, Chem. Mater., 28(2016), No. 7, p. 2408.

    Article  CAS  Google Scholar 

  35. J.F. Xiang, C.X. Chang, M. Li, S.M. Wu, L.J. Yuan, and J.T. Sun, A novel coordination polymer as positive electrode material for lithium ion battery, Cryst. Growth Des., 8(2008), No. 1, p. 280.

    Article  CAS  Google Scholar 

  36. Z.Q. Zhu, H. Li, J. Liang, Z.L. Tao, and J. Chen, The disodium salt of 2, 5-dihydroxy-1, 4-benzoquinone as anode material for rechargeable sodium ion batteries, Chem. Commun., 51(2015), No. 8, p. 1446.

    Article  CAS  Google Scholar 

  37. J.N. Gu, Y. Gu, and S.B. Yang, 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life, Chem. Commun., 53(2017), No. 94, p. 12642.

    Article  CAS  Google Scholar 

  38. Z.L. Jian, W.Z. Han, X. Lu, H.X. Yang, Y.S. Hu, J. Zhou, Z.B. Zhou, J.Q. Li, W. Chen, D.F. Chen, and L.Q. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries, Adv. Energy Mater., 3(2013), No. 2, p. 156.

    Article  CAS  Google Scholar 

  39. K.Y. Zhang, Y. Li, Y.K. Wang, J.Y. Zhao, X.M. Chen, Y.N. Dai, and Y.C. Yao, Enhanced electrochemical properties of iron oxalate with more stable Li+ ions diffusion channels by controlling polymorphic structure, Chem. Eng. J., 384(2020), art. No. 123281.

  40. H.G. Wang, S. Yuan, Z.J. Si, and X.B. Zhang, Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries, Energy Environ. Sci., 8(2015), No. 11, p. 3160.

    Article  CAS  Google Scholar 

  41. R.R. Zhao, Y.L. Cao, X.P. Ai, and H.X. Yang, Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries, J. Electroanal. Chem., 688(2013), p. 93.

    Article  CAS  Google Scholar 

  42. H.F. Fei, Y.P. Liu, C.L. Wei, Y.C. Zhang, J.K. Feng, C.Z. Chen and H.J. Yu, Poly(propylene carbonate)-based polymer electrolyte with an organic cathode for stable all-solid-state sodium batteries, Acta Phys. Chim. Sin, 36(2020), No. 5, p. 18.

    Google Scholar 

  43. H. Wang, P.F. Hu, J. Yang, G.M. Gong, L. Guo, and X.D. Chen, Renewable-juglone-based high-performance sodium-ion batteries, Adv. Mater., 27(2015), No. 14, p. 2348.

    Article  CAS  Google Scholar 

  44. C.Y. Guo, K. Zhang, Q. Zhao, L.K. Pei, and J. Chen, High-performance sodium batteries with the 9, 10-anthraquinone/CMK-3 cathode and an ether-based electrolyte, Chem. Commun., 51(2015), No. 50, p. 10244.

    Article  CAS  Google Scholar 

  45. Z.H. Xiang, Q.B. Dai, J.F. Chen, and L.M. Dai, Edge functionalization of graphene and two-dimensional covalent organic polymers for energy conversion and storage, Adv. Mater., 28(2016), No. 29, p. 6253.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 21875076), the Science and Technology Planning Project of Guangdong Province (No. 2018A05050677), the Undergraduates’ Innovating Experimentation Project of Guangdong Province (No. S202110574025), and the Undergraduates’ Innovating Experimentation Project of China (No. 202010574034) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-hua Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Fh., Wu, Yw., Zhang, Hh. et al. The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. Int J Miner Metall Mater 28, 1675–1683 (2021). https://doi.org/10.1007/s12613-021-2261-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2261-y

Keywords

Navigation