Skip to main content

Advertisement

Log in

Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The hardness, wettability, and electrochemical properties of Ti6Al4V alloy surfaces treated with anodic oxidation and plasma oxidation as well as the viabilities of the different cell lines on the obtained surfaces were investigated. The anodic oxidation was performed for 10 min under 100 V potential, and it resulted in a 0.95 µm thick nanoporous anatase-TiO2 structure. On the other hand, plasma oxidation was carried out at 650°C for 1 h and resulted in a dense rutile-TiO2 structure with a thickness of 1.2 µm. While a hardness of HV0.025 823 and roughness of ∼220 nm were obtained by plasma oxidation, those obtained by anodic oxidation were HV0.025 512 and ∼130 nm, respectively. The anodic oxidation process created a more hydrophilic surface with a contact angle of 87.2°. Both oxidation processes produced similar properties in terms of corrosion behavior and showed better resistance than the as-received state in a certain range of potential. Moreover, the surface treatments led to no significant change in the protein adsorption levels, which indicates that the difference in viability between the osteoblast and fibroblast cells was not due to the difference in surface protein adsorption. Given all the factors, the surfaces obtained by anodic oxidation treatment revealed higher cell viability than those obtained by plasma oxidation (p = 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.B. Goodman, Z.Y. Yao, M. Keeney, and F. Yang, The future of biologic coatings for orthopaedic implants, Biomaterial, 34(2013), No. 13, p. 3174.

    CAS  Google Scholar 

  2. C. Oldani and A. Dominguez, Titanium as a biomaterial for implants, [in] S. Fokter, ed., Recent Advances in Aetheoplasty, InTechOpen, London, 2012, p. 149.

    Google Scholar 

  3. M. Saini, Y. Singh, P. Arora, V. Arora and K. Jain, Implant biomaterials: A comprehensive review, Woeld J. Clin. Cases, 3(2015), No. 1, p. 52.

    Google Scholar 

  4. K. Wang, The use of titanium for medical applications in the USA, Matee. Sci. Eng. A, 213(1996), No. 1–2, p. 134.

    Google Scholar 

  5. A. Zieliński, S. Sobieszczyk, T. Seramak, W. Serbiński, B. Świeczko-Żurek, and A. Ossowska, Biocompatibility and bioactivity of load-bearing metallic implants, Adv. Matee. Sci., 10(2010), No. 4, p. 21.

    Google Scholar 

  6. A.F. Yetim, F. Yildiz, Y. Vangolu, A. Alsaran, and A. Celik, Several plasma diffusion processes for improving wear properties of Ti6Al4V alloy, Wear, 267(2009), No. 12, p. 2179.

    CAS  Google Scholar 

  7. P. Stratton and M. Graf, Wear of diffusion hardened Ti-6Al-4V sliding against tool steel, Wear, 268(2010), No. 3–4, p. 612.

    CAS  Google Scholar 

  8. X.Y. Liu, P.K. Chu, and C.X. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R, 47(2004), No. 3–4, p. 49.

    Google Scholar 

  9. S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, and C.E. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater., 8(2012), No. 8, p. 2875.

    CAS  Google Scholar 

  10. B.E. Rapuano, H. Singh, A.L. Boskey, S.B. Doty, and D.E. MacDonald, Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: Eveidence for enhanced osteoinductive properties, J. Cell. Biochem., 114(2013), No. 8, p. 1917.

    CAS  Google Scholar 

  11. D.E. MacDonald, B.E. Rapuano, P. Vyas, J.M. Lane, K. Meyers, and T. Wright, Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy promote bone formation and osseointegration, J. Cell. Biochem., 114(2013), No. 10, p. 2363.

    CAS  Google Scholar 

  12. K.L. Anderson, E.E. Apolinario, S.R. MacAuley, and K.R. Sowers, A 5′ leader sequence regulates expression of methanosarcinal CO dehydrogenase/acetyl coenzyme A synthase, J. Bacteriol., 191(2009), No. 22, p. 7123.

    CAS  Google Scholar 

  13. A. Pizzoferrato, G. Ciapetti, S. Stea, E. Cenni, C.R. Arciola, and D. Granchi, Cell culture methods for testing biocompatibility, Clin. Mater., 15(1994), No. 3, p. 173.

    CAS  Google Scholar 

  14. J.M. Anderson, Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility, Regen. Biomater., 3(2016), No. 2, p. 73.

    CAS  Google Scholar 

  15. M. Rinner, J. Gerlach, and W. Ensinger, Formation of titanium oxide films on titanium and Ti6Al4V by O2-plasma immersion ion implantation, Surf. Coat. Technol., 132(2000), No. 2–3, p. 111.

    CAS  Google Scholar 

  16. M.A.M. Silva, A.E. Martinelli, C. Alves, R.M. Nascimento, M.P. Távora, and C.D. Vilar, Surface modification of Ti implants by plasma oxidation in hollow cathode discharge, Surf. Coat. Technol., 200(2006), No. 8, p. 2618.

    CAS  Google Scholar 

  17. F. Borgioli, E. Galvanetto, F.P. Galliano, and T. Bacci, Air treatment of pure titanium by furnace and glow-discharge processes, Surf. Coat. Technol., 141(2001), No. 1, p. 103.

    CAS  Google Scholar 

  18. S. Uttiya, D. Contarino, S. Prandi, M.M. Carnasciali, G. Gemme, L. Mattera, R. Rolandi, M. Canepa, and O. Cavalleri, Anodic oxidation of titanium in sulphuric acid and phosphoric acid electrolytes, J. Mater. Sci. Nanotechnol., 1(2014), No. 1, p. S106.

    Google Scholar 

  19. W. Asumpinwong, K. Saengkiettiyut, and V. Srimaneepong, Different constant voltages of anodization on the corrosion behavior of Ti-6Al-4V alloy, Chiang Mai J. Sci., 42(2015), No. 1, p. 239.

    Google Scholar 

  20. A.K. Sharma, Anodizing titanium for space applications, Thin Solid Films, 208(1992), No. 1, p. 48.

    CAS  Google Scholar 

  21. A. Lasia, Electrochemical impedance spectroscopy and its applications, [in] B.E. Conway, J.O. Bockris, and R.E. White, eds., Modern Aspects of Electrochemistry, Springer, Boston, 2002.

    Google Scholar 

  22. H.A. Acciari, D.P.S. Palma, E.N. Codaro, Q.Y. Zhou, J.P. Wang, Y.H. Ling, J.Z. Zhang, and Z.J. Zhang, Surface modifications by both anodic oxidation and ion beam implantation on electropolished titanium substrates, Appl. Surf. Sci., 487(2019), p. 1111.

    CAS  Google Scholar 

  23. H.D. Traid, M.L. Vera, A.E. Ares, and M.I. Litter, Porous titanium dioxide coatings obtained by anodic oxidation for photocatalytic applications, Procedia Mater. Sci., 9(2015), p. 619.

    CAS  Google Scholar 

  24. T.A. Soares, H. Mozaffari, and H. Reinecke, Generation of microstructures on a Ti-6Al-4V substrate through anodization, Surf. Coat. Technol., 278(2015), p. 64.

    CAS  Google Scholar 

  25. K. Satoh, S. Sato, and K. Wagatsuma, Formation mechanism of toxic-element-free oxide layer on Ti-6Al-4V alloy in d.c. glow discharge plasma with pure oxygen gas, Surf. Coat. Technol., 302(2016), p. 82.

    CAS  Google Scholar 

  26. A. Çelik, M. Aslan, A.F. Yetim, and Ö. Bayrak, Wear behavior of plasma oxidized CoCrMo alloy under dry and simulated body fluid conditions, J. Bionic Eng., 11(2014), No. 2, p. 303.

    Google Scholar 

  27. M. Aslan, O. Çomaklı, M. Yazıcı, A.F. Yetim, Ö. Bayrak, and A. Çelik, The effect of plasma oxidation and nitridation on corrosion behavior of CoCrMo alloy in SBF solution, Surf. Rev. Lett., 25(2018), No. 08, art. No. 1950024.

  28. A. Çelik, Ö. Bayrak, A. Alsaran, İ. Kaymaz, and A.F. Yetim, Effects of plasma nitriding on mechanical and tribological properties of CoCrMo alloy, Surf. Coat. Technol., 202(2008), No. 11, p. 2433.

    Google Scholar 

  29. A. Yli-Pentti, Electroplating and electroless plating, [in] S. Hashmi, G.F. Batalha, C.J.V. Tyne, and B. Yilbas, eds., Comprehensive Materials Processing, Elsevier, 2014.

  30. A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, and J.C.S. Fernandes, Corrosion mechanisms in titanium oxide-based films produced by anodic treatment, Electrochim. Acta, 234(2017), p. 16.

    CAS  Google Scholar 

  31. D. Veys-Renaux, Z.A.E. Haj, and E. Rocca, Corrosion resistance in artificial saliva of titanium anodized by plasma electrolytic oxidation in Na3PO4, Surf. Coat. Technol., 285(2016), p. 214.

    CAS  Google Scholar 

  32. K. Elagli, M. Traisnel, and H.F. Hildebrand, Electrochemical behaviour of titanium and dental alloys in artificial saliva, Electrochim. Acta, 38(1993), No. 13, p. 1769.

    CAS  Google Scholar 

  33. K.Y. Cai, J. Bossert, and K.D. Jandt, Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?, Colloids Surf. B, 49(2006), No. 2, p. 136.

    CAS  Google Scholar 

  34. B.E. Li, J. Li, C.Y. Liang, H.P. Li, L.T. Guo, S.M. Liu, and H.S. Wang, Surface roughness and hydrophilicity of titanium after anodic oxidation, Rare Met. Mater. Eng., 45(2016), No. 4, p. 858.

    CAS  Google Scholar 

  35. M. Lukaszewska-Kuska, P. Wirstlein, R. Majchrowski, and B. Dorocka-Bobkowska, Osteoblastic cell behaviour on modified titanium surfaces, Micron, 105(2018), p. 55.

    CAS  Google Scholar 

  36. A. Wennerberg and T. Albrektsson, Effects of titanium surface topography on bone integration: A systematic review, Clin. Oral Implan. Res., 20(2009), No. s4, p. 172.

    Google Scholar 

  37. M. Bachle and R.J. Kohal, A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells, Clin. Oral Implan. Res., 15(2004), No. 6, p. 683.

    Google Scholar 

  38. L.L. Guehennec, M.A. Lopez-Heredia, B. Enkel, P. Weiss, Y. Amouriq, and P. Layrolle, Osteoblastic cell behaviour on different titanium implant surfaces, Acta Biomater., 4(2008), No. 3, p. 535.

    Google Scholar 

  39. L. Crespo, M. Hierro-Oliva, S. Barriuso, V. Vadillo-Rodríguez, M.Á. Montealegre, L. Saldaña, E. Gomez-Barrena, J.L. González-Carrasco, M.L. González-Martín, and N. Vilaboa, On the interactions of human bone cells with Ti6Al4V thermally oxidized by means of laser shock processing, Biomed. Mater., 11(2016), No. 1, art. No. 015009.

  40. C.H. Ku, D.P. Pioletti, M. Browne, and P.J. Gregson, Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour, Biomaterials, 23(2002), No. 6, p. 1447.

    CAS  Google Scholar 

  41. J. Chen, S. Mwenifumbo, C. Langhammer, J.P. McGovern, M. Li, A. Beye, and W.O. Soboyejo, Cell/surface interactions and adhesion on Ti-6Al-4V: Effects of surface texture, J. Biomed. Mater. Res. Part B, 82(2007), No. 2, p. 360.

    CAS  Google Scholar 

  42. W. de Melo Silva, C.A. Ribeiro, C.S. Marques, A.S. Tabata, M.J. Saeki, L.I. Medeiros, and D.E. de Oliveira, Fibroblast and pre-osteoblast cell adhesive behavior on titanium alloy coated with diamond film, Mater. Res., 20(2017), No. 2 suppl, p. 284.

    Google Scholar 

  43. Y. Shibata and Y. Tanimoto, A review of improved fixation methods for dental implants Part I: Surface optimization for rapid osseointegration, J. Prosthodont. Res., 59(2015), No. 1, p. 20.

    Google Scholar 

  44. J.H. Park, R. Olivares-Navarrete, R.E. Baier, A.E. Meyer, R. Tannenbaum, B.D. Boyan, and Z. Schwartz, Effect of cleaning and sterilization on titanium implant surface properties and cellular response, Acta Biomater., 8(2012), No. 5, p. 1966.

    CAS  Google Scholar 

  45. E. Czarnowska A. Sowinska, B. Cukrowska, J.R. Sobiecki, and T. Wierzchoñ, Response of human osteoblast-like cells and fibroblasts to titanium alloy nitrided under glow discharge conditions, Mater. Sci. Forum, 475–479(2005), p. 2415.

    Google Scholar 

  46. E. Czarnowska, T. Wierzchoñ, and A. Maranda-Niedbala Properties of the surface layers on titanium alloy and their biocompatibility in in vitro eetts, J. Mater. Process. Technol., 92–93(1999), p. 190.

    Google Scholar 

  47. S. Bruni, M. Martinesi, M. Stio, C. Treves, T. Bacci, and F. Borgioli, Effects of surface treatment of Ti-6A1-4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells, Acta Biomater., 1(2005), No. 2, p. 223.

    Google Scholar 

  48. C. Treves, M. Martinesi, M. Stio, A. Gutiérrez, J.A. Jiménez, and M.F. López, In vitro biocompatibility evaluation of surface-modified titanium alloys, J. Biomed. Mater. Res. Part A, 92(2010), No. 4, p. 1623.

    Google Scholar 

  49. C.F. Huang, H.C. Cheng, C.M. Liu, C.C. Chen, and K.L. Ou, Microstructure and phase transition of biocompatible titanium oxide film on titanium by plasma discharging, J. Alloys Compd., 476(2009), No. 1–2, p. 683.

    CAS  Google Scholar 

  50. A. El-Ghannam, L. Starr, and J. Jones, Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6Al-4V implant material in vitro, J. Biomed. Mater. Res., 41(1998), No. 1, p. 30.

    CAS  Google Scholar 

  51. M. Martinesi, S. Bruni, M. Stio, C. Treves, and F. Borgioli, In vitro interaction between surface-treated Ti-6Al-4V titanium alloy and human peripheral blood mononuclear cells, J. Boomed. Mater. Res. Part A, 74(2005), No. 2, p. 197.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Erzincan Binali Yıldırım University Research Fund (No. FBA-2018-547). Authors acknowledge Prof. Dr. Bora Garipcan for enabling the authors to Biomaterials Laboratory of Biomedical Engineering Institute, Boǧaziçi University and Prof. Dr. Ayhan Çelik for permitting the use of glow discharge plasma oxidation at Mechanical Engineering Laboratory in Ataturk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgü Bayrak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrak, Ö., Ghahramanzadeh Asl, H. & Ak, A. Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation. Int J Miner Metall Mater 27, 1269–1280 (2020). https://doi.org/10.1007/s12613-020-2020-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2020-5

Keywords

Navigation