Skip to main content
Log in

Purification of specularite by centrifugation instead of flotation to produce iron oxide red pigment

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study used specularite, a high-gradient magnetic separation concentrate, as a raw material in reverse flotation. An iron concentrate with a grade of 65.1wt% and a recovery rate of 75.31% were obtained. A centrifugal concentrator served as the deep purification equipment for the preparation of iron oxide red pigments, and its optimal rotating drum speed, feed concentration, and other conditions were determined. Under optimal conditions, a high-purity iron oxide concentrate with a grade of 69.38wt% and a recovery rate of 80.89% were obtained and used as a raw material for preparing iron oxide red pigment. Calcining with sulfuric acid produced iron red pigments with different hues. Simultaneously, middlings with a grade of 60.20wt% and a recovery rate of 17.51% were obtained and could be used in blast furnace ironmaking. High-value utilization of specularite beneficiation products was thus achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, C.K. Wang, Y. Zeng, P.Y. Li, T.H. Xie, and Y.K. Zhang, Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate, J. Hazard. Mater., 317(2016), p. 563.

    Article  CAS  Google Scholar 

  2. J.M. Lu and D. Dreisinger, Pressure oxidation of ferrous ions by oxygen and hematite precipitation from concentrated solution of calcium, copper and iron chlorides, Hydrometallurgy, 140(2013), p. 59.

    Article  CAS  Google Scholar 

  3. Z.C. Liu and Y.J. Zheng, Effect of Fe(II) on the formation of iron oxide synthesized from pyrite cinders by hydrothermal process, Powder Technol., 209(2011), No. 1–3, p. 119.

    Article  CAS  Google Scholar 

  4. D.X. Li, G.L. Gao, F.L. Meng, and C. Ji, Preparation of nano-iron oxide red pigment powders by use of cyanided tailings, J. Hazard. Mater., 155(2008), No. 1–2, p. 369.

    CAS  Google Scholar 

  5. A.E.C. Peres and M.I. Correa, Depression of iron oxides with corn starches, Miner. Eng., 9(1996), No. 12, p. 1227.

    Article  CAS  Google Scholar 

  6. S.Y. Yang and L.G. Wang, Measurement of froth zone and collection zone recoveries with various starch depressants in anionic flotation of hematite and quartz, Miner. Eng., 138(2019), p. 31.

    Article  CAS  Google Scholar 

  7. X.Q. Weng, G.J. Mei, T.T. Zhao, and Y. Zhu, Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation, Sep. Purif. Technol., 103(2013), p. 187.

    Article  CAS  Google Scholar 

  8. A.N. Santana and A.E.C. Peres, Reverse magnesite flotation, Miner. Eng., 14(2001), No. 1, p. 107.

    Article  CAS  Google Scholar 

  9. L.Z. Chen, N.Q. Ren, and D.H. Xiong, Experimental study on performance of a continuous centrifugal concentrator in reconcentrating fine hematite, Int. J. Miner. Process., 87(2008), No. 1–2, p. 9.

    Article  CAS  Google Scholar 

  10. R. Burt, The role of gravity concentration in modern processing plants, Miner. Eng., 12(1999), No. 11, p. 1291.

    Article  CAS  Google Scholar 

  11. B. Klein, N.E. Altun, and H. Ghaffari, Use of centrifugal-gravity concentration for rejection of talc and recovery improvement in base-metal flotation, Int. J. Miner. Metall. Mater., 23(2016), No. 8, p. 859.

    Article  CAS  Google Scholar 

  12. R.Q. Honaker and A. Das, Ultrafine coal cleaning using a centrifugal fluidized-bed separator, Coal Prep., 24(2004), No. 1–2, p. 1.

    Article  CAS  Google Scholar 

  13. A. Das and B. Sarkar, Advanced gravity concentration of fine particles: A review, Miner. Process. Extr. Metall. Rev., 39(2018), No. 6, p. 359.

    Article  Google Scholar 

  14. A. Falconer, Gravity separation: Old technique/new methods, Phys. Sep. Sci. Eng., 12(2003), No. 1, p. 31.

    Article  CAS  Google Scholar 

  15. C.N. Katwika, M.-B. Kime, P.N.M. Kalenga, B.I. Mbuya, and T.R. Mwilen, Application of Knelson concentrator for beneficiation of copper-cobalt ore tailings, Miner. Process. Extr. Metall. Rev., 40(2019), No. 1, p. 35.

    Article  CAS  Google Scholar 

  16. Y. Foucaud, Q. Dehaine, L.O. Filippov, and I.V. Filippova, Application of Falcon centrifuge as a cleaner alternative for complex tungsten ore processing, Minerals, 9(2019), No. 7, p. 448.

    Article  CAS  Google Scholar 

  17. Q. Dehaine, Y. Foucaud, J.S. Kroll-Rabotin, and L.O. Filippov, Experimental investigation into the kinetics of Falcon UF concentration: Implications for fluid dynamic-based modelling, Sep. Purif. Technol., 215(2019), p. 590.

    Article  CAS  Google Scholar 

  18. L.O. Filippov, Q. Dehaine, and I.V. Filippova, Rare earths (La, Ce, Nd) and rare metals (Sn, Nb, W) as by-products of kaolin production — Part 3: Processing of fines using gravity and flotation, Miner. Eng., 95(2016), p. 96.

    Article  CAS  Google Scholar 

  19. M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D.M. Franks, and C.J. Moran, Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, J. Cleaner Prod., 84(2014), p. 411.

    Article  Google Scholar 

  20. R.Q. Honaker, D. Wang, and K. Ho, Application of the Falcon concentrator for fine coal cleaning, Miner. Eng., 9(1996), No. 11, p. 1143.

    Article  CAS  Google Scholar 

  21. R.Q. Honaker, High capacity fine coal cleaning using an enhanced gravity concentrator, Miner. Eng., 11(1998), No. 12, p. 1191.

    Article  CAS  Google Scholar 

  22. X.N. Zhu, Y.J. Tao, Q.X. Sun, and Z.P. Man, The low efficiency of lignite separation by an enhanced gravity concentrator, Energy Sources Part A, 39(2017), No. 8, p. 835.

    Article  CAS  Google Scholar 

  23. X.N. Zhu, Y.J. Tao, Q.X. Sun, and Z.P. Man, Enrichment and migration regularity of fine coal particles in enhanced gravity concentrator, Int. J. Miner. Process., 163(2017), p. 48.

    Article  CAS  Google Scholar 

  24. G. Tozsin, C. Acar, and O. Sivrikaya, Evaluation of a Turkish lignite coal cleaning by conventional and enhanced gravity separation techniques, Int. J. Coal Prep. Util., 38(2018), No. 3, p. 135.

    Article  CAS  Google Scholar 

  25. ISO, ISO 1248: 2006(E): Iron Oxide PigmentsSpecifications and Methods of Tests, Switzerland, 2006.

  26. A.K. Majumder, G.J. Lyman, M. Brennan, and P.N. Holtham, Modeling of flowing film concentrators: Part 1. Water split behavior, Int. J. Miner. Process., 80(2006), No. 1, p. 71.

    Article  CAS  Google Scholar 

  27. S. Ata, Phenomena in the froth phase of flotation — A review, Int. J. Miner. Process., 102–103(2012), p. 1.

    Article  Google Scholar 

  28. L.O. Filippov, I.V. Filippova, and V.V. Severov, The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates, Miner. Eng., 23(2010), No. 2, p. 91.

    Article  CAS  Google Scholar 

  29. Y.H. Wang and J.W. Ren, The flotation of quartz from iron minerals with a combined quaternary ammonium salt, Int. J. Miner. Process., 77(2005), No. 2, p. 116.

    Article  CAS  Google Scholar 

  30. Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113.

    Article  CAS  Google Scholar 

  31. L. Ergün and S. Ersayın, Studies on pinched sluice concentration. Part II: Characterization of flow over a pinched sluice, Miner. Eng., 15(2002), No. 6, p. 437.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly funded by the National Natural Science Foundation of China (No. 51304181), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (No. QYZDJ-SSW-JSC021), and the Key Research Program of Chinese Academy of Sciences (No. ZDRW-ZS-2018-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-li Li or Qiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhu, Sw., Li, Yj. et al. Purification of specularite by centrifugation instead of flotation to produce iron oxide red pigment. Int J Miner Metall Mater 28, 56–65 (2021). https://doi.org/10.1007/s12613-020-2003-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2003-6

Keywords

Navigation