Skip to main content
Log in

Effect of TiB2 content on microstructure and properties of in situ Ti-TiB composites

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This study determined the optimal concentration of titanium diboride (TiB2) particles for the development of in situ titanium–titanium boride (Ti–TiB) metal matrix composites (MMCs) prepared by a conventional powder metallurgy route to be used for industrial applications. The effect of concentration of TiB2 particles was studied by reinforcing TiB2 powder in different mass fractions (2wt%, 5wt%, 10wt%, and 20wt%) into pure Ti powder during the fabrication process. The MMCs were sintered at high temperatures under vacuum. The transmission electron microscopy (TEM) results revealed the formation of needle-shaped TiB whiskers, indicating that in situ reaction occurred during vacuum sintering of the powder compacts. All the composite samples had a high sintered density, and the hardness of the composites increased with an increase in the mass fraction of reinforcement. Mechanical and tribological properties such as flexural strength, impact, and wear properties were determined and found to be dependent on the mass fraction of the reinforcement. However, the mechanism for the in situ reaction needs further investigation by high-energy in situ X-ray diffraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.K. Chawla, Metal Matrix Composites, R.W. Cahn, P. Haasen and E.J. Kramer, eds., Willey and Sons, 2006.

  2. K.K. Chawla, Composite Materials: Science and Engineering, Springer, 2012.

    Book  Google Scholar 

  3. M.D. Hayat, H. Singh, Z. He, and P. Cao, Titanium metal matrix composites: An overview, Composites Part A, 121(2019), p. 418.

    Article  Google Scholar 

  4. Y. Enomoto and T. Yamamoto, New materials in automotive tribology, Tribol. Lett., 5(1998), No. 1, p. 13.

    Article  Google Scholar 

  5. J.E. Allison and G.S. Cole, Metal-matrix composites in the automotive industry: Opportunities and challenges, JOM, 45(1993), No. 1, p. 19.

    Article  Google Scholar 

  6. P.R. Smith and F.H. Froes, Developments in titanium metal matrix composites, JOM, 36(1984), No. 3, p. 19.

    Article  Google Scholar 

  7. C.M. Ward-Close, M.R. Winstone, and P.G. Partridge, Developments in the processing of titanium alloy metal matrix composites, Mater. Des., 15(1994), No. 2, p. 67.

    Article  Google Scholar 

  8. I.A. Ibrahim, F.A. Mohamed and E. J. Lavernia, Particulate reinforced metal matrix composites—a review, J. Mater. Sci., 26(1991), No. 5, p. 1137.

    Article  Google Scholar 

  9. K. Geng, W.J. Lu, Y.X. Qin, and D. Zhang, In situ preparation of titanium matrix composites reinforced with TiB whiskers and Y2O3 particles, Mater. Res. Bull., 39(2004), No. 6, p. 873.

    Article  Google Scholar 

  10. L. Geng, D.R. Ni, J. Zhang, and Z.Z. Zheng, Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites, J. Alloys Compd., 463(2008), No. 1–2, p. 488.

    Article  Google Scholar 

  11. T.M.T. Godfrey, P.S. Goodwin, and C.M. Ward-Close, Production of titanium particulate metal matrix composite by mechanical milling, Mater. Sci. Technol., 16(2000), No. 7–8, p. 753.

    Article  Google Scholar 

  12. S.F. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, J. Umeda, and Y.B. Fu, Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion, Mater. Des., 95(2016), p. 127.

    Article  Google Scholar 

  13. Z.H. Zhang, X.B. Shen, F.C. Wang, and S.K. Lee, A new rapid route for in situ synthesizing monolithic TiB ceramic, J. Am. Ceram. Soc., 94(2011), No. 9, p. 2754.

    Article  Google Scholar 

  14. D.X. Li, D.H. Ping, Y.X. Lu, and H.Q. Ye, Characterization of the microstructure in TiB-whisker reinforced Ti alloy matrix composite, Mater. Lett., 16(1993), No. 6, p. 322.

    Article  Google Scholar 

  15. W.O. Soboyejo, R.J. Lederich, and S.M.L. Sastry, Mechanical behavior of damage tolerant TiB whisker-reinforced in situ titanium matrix composites, Acta Metall. Mater., 42(1994), No. 8, p. 2579.

    Article  Google Scholar 

  16. M. Zadra and L. Girardini, High-performance, low-cost titanium metal matrix composites, Mater. Sci. Eng. A, 608(2014), p. 155.

    Article  Google Scholar 

  17. A.K. Gangopadhyay and J.L. Margrave, Thermodynamic properties of inorganic substances. VI. The high temperature heat contents of chromel-P and alumel, J. Chem. Eng. Data, 8(1963), No. 2, p. 204.

    Article  Google Scholar 

  18. K.B. Panda and K.S. Ravi Chandran, Synthesis of ductile titanium–titanium boride (Ti–TiB) composites with a beta- titanium matrix: The nature of TiB formation and composite properties, Metall. Mater. Trans. A, 34(2003), No. 6, p. 1371.

    Article  Google Scholar 

  19. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, and J. Eckert, Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties, Acta Mater., 76(2014), p. 13.

    Article  Google Scholar 

  20. T.M.T. Godfrey, A. Wisbey, P.S. Goodwin, K. Bagnall, and C.M. Ward-Close, Microstructure and tensile properties of mechanically alloyed Ti–6A1–4V with boron additions, Mater. Sci. Eng. A, 282(2000), No. 1–2, p. 240.

    Article  Google Scholar 

  21. C.J. Zhang, J.P. Qu, J. Wu, S.Z. Zhang, J.C. Han, M.D. Hayat, and P. Cao, A titanium composite with dual reinforcements of micrometer sized TiB and submicrometer sized Y2O3, Mater. Lett., 233(2018), p. 242.

    Article  Google Scholar 

  22. J.C. Han, Z.D. Lü, C.J. Zhang, S.Z. Zhang, H.Z. Zhang, P. Lin, and P. Cao, The microstructural characterization and mechanical properties of 5 vol.% (TiBw + TiCp)/Ti composite produced by open-die forging, Metals, 8(2018), No. 7, p. 485.

    Article  Google Scholar 

  23. M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, and S.H. Hong, Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti–6Al–4V composites, Scripta Mater., 66(2012), No. 7, p. 487.

    Article  Google Scholar 

  24. M. De Graef, J.P.A. Löfvander, C. McCullough, and C.G. Levi, The evolution of metastable Bf borides in a TiAlB alloy, Acta Metall. Mater., 40(1992), No. 12, p. 3395.

    Article  Google Scholar 

  25. T. Lundström, Transition metal borides, [in] V.I. Matkovich, G.V. Samsonov, P. Hagenmuller, and T. Lundstrom, eds., Boron and Refractory Borides, Springer-Verlag Berlin Heidelberg, 1977, p. 351.

    Chapter  Google Scholar 

  26. Z. Fan, Z.X. Guo, and B. Cantor, The kinetics and mechanism of interfacial reaction in sigma fibre-reinforced Ti MMCs, Composites Part A, 28(1997), No. 2, p. 131.

    Article  Google Scholar 

  27. I.Y. Kim, B.J. Choi, Y.J. Kim, and Y.Z. Lee, Friction and wear behavior of titanium matrix (TiB + TiC) composites, Wear, 271(2011), No. 9–10, p. 1962.

    Article  Google Scholar 

  28. M. Selva Kumar, P. Chandrasekar, P. Chandramohan, and M. Mohanraj, Characterisation of titanium–titanium boride composites processed by powder metallurgy techniques, Mater. Charact., 73(2012), p. 43.

    Article  Google Scholar 

  29. J.Y. Zhang, W.X. Ke, W. Ji, Z. Fan, W.M. Wang, and Z.Y. Fu, Microstructure and properties of in situ titanium boride (TiB)/titanium (TI) composites, Mater. Sci. Eng. A, 648(2015), p. 158.

    Article  Google Scholar 

  30. H.B. Feng, D.C. Jia, and Y. Zhou, Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites, Composites Part A, 36(2005), No. 5, p. 558.

    Article  Google Scholar 

  31. J.S. Kim, K.M. Lee, D.H. Cho, and Y.Z. Lee, Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates, Wear, 301(2013), No. 1–2, p. 562.

    Article  Google Scholar 

  32. N. Kang, P. Coddet, Q. Liu, H.L. Liao, and C. Coddet, In-situ TiB/near a Ti matrix composites manufactured by selective laser melting, Addit. Manuf., 11(2016), p. 1.

    Article  Google Scholar 

  33. K. Khanlari, M. Ramezani, P. Kelly, P. Cao, and T. Neitzert, Reciprocating sliding wear behavior of 60NiTi as compared to 440C steel under lubricated and unlubricated conditions, Tribol. Trans., 61(2018), p. 1.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the University of Auckland for providing a doctoral scholarship. The author would like to thank Prof. A.W.H. Ngan for providing an opportunity to work at the University of Hong Kong, China. The author also acknowledges the Electron Microscope Unit (EMU) of the University of Hong Kong, China. This work was partially supported by the Titanium Technologies New Zealand (TiTeNZ) Programme funded by the Ministry of Business Innovation and Employment (MBIE), New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Hayat or Peng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Hayat, M., Zhang, H. et al. Effect of TiB2 content on microstructure and properties of in situ Ti-TiB composites. Int J Miner Metall Mater 26, 915–924 (2019). https://doi.org/10.1007/s12613-019-1797-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1797-6

Keywords

Navigation