Skip to main content
Log in

Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Cemented tailings backfill (CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar (SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First, the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. He, H.P. Xie, S.P. Peng, and Y.D. Jiang, Study on rock mechanics in deep mining engineering, Chin. J. Rock Mech. Eng., 24(2005), No. 16, p. 2803.

    Google Scholar 

  2. F.P. Hassani, A. Mortazavi, and M. Shabani, An investigation of mechanisms involved in backfill-rock mass behavior in narrow vein mining, J. South Afr. Inst. Min. Metall., 108(2008), No. 8, p. 463.

    Google Scholar 

  3. R. Rankine, M. Pacheco, and N. Sivakugan, Underground mining with backfills, Soils Rocks, 30(2007), No. 2, p. 93.

    Google Scholar 

  4. P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater, 25(2018), No. 12, p. 1363.

    Article  Google Scholar 

  5. M. Benzaazoua, B. Bussière, I. Demers, M. Aubertin, É. Fried, and A. Blier, Integrated mine tailings management by combining environmental desulphurization and cemented paste backfill: Application to mine Doyon, Quebec, Canada, Miner. Eng., 21(2008), No. 4, p. 330.

    Article  Google Scholar 

  6. M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819.

    Article  Google Scholar 

  7. N. Sivakugan, R.M. Rankine, K.J. Rankine, and K.S. Rankine, Geotechnical considerations in mine backfilling in Australia, J. Cleaner Prod., 14(2006), No. 12–13, p. 1168.

    Article  Google Scholar 

  8. L. Yang, J.P. Qiu, H.Q. Jiang, S.Q. Hu, H. Li, and S.B. Li, Use of cemented super-fine uncoarse tailings backfill for control of subsidence, Minerals, 7(2017), No. 11, p. 216.

    Article  Google Scholar 

  9. Z.X. Liu, W.G. Dang, and X.Q. He, Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 574.

    Article  Google Scholar 

  10. S. Ouellet, B. Bussière, M. Aubertin, and M. Benzaazoua, Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results, Cem. Concr. Compos., 37(2007), No. 12, p. 1654.

    Article  Google Scholar 

  11. E. Yilmaz, T. Belem, and M. Benzaazoua, Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions, Eng. Geol., 185(2015), p. 52.

    Article  Google Scholar 

  12. V.F.N. Torres, C.D. da Gama, M.C. e Silva, P.F. Neves, and Q. Xie, Comparative stability analyses of traditional and selective room-and-pillar mining techniques for sub-horizontal tungsten veins, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 1.

    Article  Google Scholar 

  13. J.X. Zhang, B.Y. Li, N. Zhou, and Q. Zhang, Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential, Int. J. Rock Mech. Min. Sci., 88(2016), p. 197.

    Article  Google Scholar 

  14. D.Q. Deng, L. Liu, Z.L. Yao, K.I.I.L. Song, and D.Z. Lao, A practice of ultra-fine tailings disposal as filling material in a gold mine, J. Environ. Manage., 196(2017), p. 100.

    Article  Google Scholar 

  15. X. Ke, H.B. Hou, M. Zhou, Y. Wang, and X. Zhou, Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater., 96(2015), p. 378.

    Article  Google Scholar 

  16. A. Khoshand and M. Fall, Geotechnical characterization of peat-based landfill cover materials, J. Rock Mech. Geotech. Eng., 8(2016), No. 5, p. 596.

    Article  Google Scholar 

  17. M. Li, J.X. Zhang, N. Zhou, and Y.L. Huang, Effect of particle size on the energy evolution of crushed waste rock in coal mines, Rock Mech. Rock Eng., 50(2017), No. 5, p. 1347.

    Article  Google Scholar 

  18. L. Cui and M. Fall, Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions, Constr. Build. Mater., 125(2016), p. 553.

    Article  Google Scholar 

  19. B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, and İ. Alp, Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cem. Concr. Compos., 31(2009), No. 4, p. 268.

    Article  Google Scholar 

  20. C. Liu, B. Han, W. Sun, J.X. Wu, S. Yao, and H.Y. Hu, Experimental study of strength of backfilling of cemented rock debris and its application under low temperature condition, Chin. J. Rock Mech. Eng., 34(2015), No. 1, p. 139.

    Google Scholar 

  21. D.R. Tesarik, J.B. Seymour, and T.R. Yanske, Long-term stability of a backfilled room-and-pillar test section at the Buick Mine, Missouri, USA, Int. J. Rock Mech. Min. Sci., 46(2009), No. 7, p. 1182.

    Article  Google Scholar 

  22. J.S. Chen, B. Zhao, X.M. Wang, Q.L. Zhang, and L. Wang, Cemented backfilling performance of yellow phosphorus slag, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 121.

    Article  Google Scholar 

  23. R.J. Marsal, Mechanical Properties of Rockfill Embankment Dam Engineering, John Wiley Sons Inc., New York, 1973, p. 109.

    Google Scholar 

  24. M. Fall, M. Benzaazoua, and S. Ouellet, Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill, Miner. Eng., 18(2005), No. 1, p. 41.

    Article  Google Scholar 

  25. A. Kesimal, E. Yilmaz, B. Ercikdi, İ. Alp, M. Yumlu, and B. Ozdemir, Laboratory testing of cemented paste backfill, Madencilik, 41(2002), No. 4, p. 11.

    Google Scholar 

  26. G.Y. Zhao, H. Wu, Y. Chen, Z.W. Xu, Z.Y. Li, and E.J. Wang, Experimental study on load-bearing mechanism and compaction characteristics of mine filling materials, J. China Univ. Min. Technol., 46(2017), No. 6, p. 1251.

    Google Scholar 

  27. W.B. Xu, W.D. Song, D.X. Wang, B.G. Yang, and W.D. Pan, Energy dissipation properties of cement backfill body under triaxle compression conditions, J. China Univ. Min. Technol., 43(2014), No. 5, p. 808.

    Google Scholar 

  28. W.B. Xu, P.W. Cao, and M.M. Tian, Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents, Minerals, 8(2018), No. 4, p. 167.

    Article  Google Scholar 

  29. W.B. Xu, X.C. Tian, and P.W. Cao, Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement, Nondestr. Test. Eval., 33(2018), No. 2, p. 198.

    Article  Google Scholar 

  30. W.B. Xu and P.W. Cao, Fracture behaviour of cemented tailing backfill with pre-existing crack and thermal treatment under three-point bending loading: Experimental study and particle flow code simulation, Eng. Fract. Mech., 195(2018), p. 129.

    Article  Google Scholar 

  31. W.B. Xu, X.C. Tian, and C.B. Wan, Prediction of mechanical performance of cemented paste backfill by the electricity resistivity measurement, J. Test. Eval., 46(2018), No. 6, p. 2450.

    Article  Google Scholar 

  32. W.B. Xu, Y.B. Hou, W.D. Song, Y.P. Zhou, and T.J. Yin, Resistivity and thermal infrared precursors associated with cemented backfill mass, J. Cent. South Univ., 23(2016), No. 9, p. 2329.

    Article  Google Scholar 

  33. E. Yilmaz, A. Kesimal, and B. Ercikdi, Evaluation of acid producing sulphidic mine tailings as a paste backfill, Turk. J. Earth Sci. Rev., 17(2004), No. S1, p. 11.

    Google Scholar 

  34. E. Yilmaz, T. Belem, M. Benzaazoua, A. Kesimal, and B. Ercikdi, Evaluation of the strength properties of deslimed tailings paste backfill, Miner. Resour. Eng., 12(2007), No. 2, p. 129.

    Google Scholar 

  35. E. Yilmaz, Investigating the Hydro-geotechnical and Microstructural Properties of Cemented Paste Backfills Using the Versatile Cuaps Apparatus [Dissertation], Université du Québec en Abitibi-Témiscamingue (UQAT), Quebec City, 2010, p. 1.

    Google Scholar 

  36. L. Dong, Q. Gao, S.Q. Nan, and J.Q. Du, Performance and hydration mechanism of new super fine cemented whole-tailings backfilling materials, J. Cent. South Univ. Sci. Technol., 44(2013), No. 4, p. 1571.

    Google Scholar 

  37. J. Dai, Dynamic Behaviors and Blasting Theory of Rock, Metallurgical Industry Press, Beijing, 2002, p. 60.

    Google Scholar 

  38. J.X. Fu, C.F. Du, and W.D. Song, Strength sensitivity and failure mechanism of full tailings cemented backfills, J. Univ. Sci. Technol. Beijing, 36(2014), No. 9, p. 1149.

    Google Scholar 

  39. Z.X. Liu and X.B. Li, Research on stability of high-level backfill in blasting, Min. Metall. Eng. 24(2004), No. 3, p. 21.

    Google Scholar 

  40. N. Li, K.P. Zhou, D. Pan, and H.L. Zhu, Study on intensity response of rubble backfill to dynamic loading of medium-length hole blasting, Min. Metall. Eng., 31(2011), No. 4, p. 9.

    Google Scholar 

  41. Q.L. Zhang, W. Yang, S. Yang, and M.X. Wang, Test research on stability of high-density total tailing cemented backfilling under dynamic loading, China Saf. Sci. J., 25(2015), No. 3, p. 78.

    Google Scholar 

  42. J.H. Sun, Y.M. Dou, J. Zhou, and B. Li, Experimental study of the effect of strain rate on compressive property of concrete, China Concr. Cem. Prod., 2011, No. 5, p. 1.

    Google Scholar 

  43. R.J. Chen, H.W. Liu, and R. Zeng, SHPB dynamic experiment on silica fume concrete, Adv. Mater. Res., 631(2013), p. 771.

    Article  Google Scholar 

  44. C.E. Fairhurst and J.A. Hudson, Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression, Int. J. Rock Mech. Min. Sci., 36(1999), No. 3, p. 279.

    Article  Google Scholar 

  45. J.Y. Xu, J.S. Fan, and X.C. Lu, Dynamic Mechanical Properties of Rock under Confining Pressure, Northwestern Polytechnical University Press, Xi’an, 2012, p. 56.

    Google Scholar 

  46. S.S. Wang, M.H. Zhang, and S.T. Quest, Effect of sample size on static strength and dynamic increase factor of high-strength concrete from SHPB test, J. Test. Eval., 39(2011), No. 5, p. 898.

    Google Scholar 

  47. J.Z. Liu, J.Y. Xu, X.C Lu, L. Zhang, and Z.D. Wang, Experimental study on dynamic mechanical properties of amphibolies under impact compressive loading, Chin. J. Rock Mech. Eng., 28(2009), No. 10, p. 2113.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFC0604602), the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-17-029A2), and the Open fund of Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education of China (No. ustbmslab201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Elmo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Yy., Yu, X., Elmo, D. et al. Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading. Int J Miner Metall Mater 26, 404–416 (2019). https://doi.org/10.1007/s12613-019-1749-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1749-1

Keywords

Navigation