Skip to main content
Log in

The selective effect of food-grade guar gum on chalcopyrite–monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The flotation separation of chalcopyrite from monoclinic pyrrhotite using food-grade guar gum (FGG) as a depressant was studied through flotation tests, kinetic studies, dynamic potential measurements, adsorption experiments, and infrared spectral analyses. The microflotation results showed that the flotation separation of chalcopyrite from monoclinic pyrrhotite could not be realized by adding mixed aerofloat (CSU11) alone. The depressant FGG exhibited a selective depression effect on monoclinic pyrrhotite by controlling the pulp pH range from 5.0 to 6.0, with a maximum floatability variation of 79.36% in the presence of CSU11. The flotation kinetics, zeta-potential, adsorption, and infrared spectroscopy studies revealed that the FGG could absorb more strongly on the surface of monoclinic pyrrhotite than on the surface of chalcopyrite. In addition, the results revealed that the interaction of FGG with the monoclinic pyrrhotite surface was governed primarily by strong chemisorption, whereas FGG mainly bonded to chalcopyrite through hydrogen bonding. This difference was responsible for the excellent depression selectivity of FGG toward monoclinic pyrrhotite flotation and weak depression effect toward chalcopyrite flotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.Z. Qiu, Y.H. Hu, Q.M. Feng, and T. Jiang, The mineral processing of 21 century, Sci.Chinese, 5(1997), p. 23.

    Google Scholar 

  2. K.E. Waters, N.A. Rowson, R.W. Greenwood, and A.J. Williams, The effect of heat treatment on the magnetic properties of pyrite, Miner. Eng., 21(2008), No. 9, p. 679.

    Article  Google Scholar 

  3. C.V. Díaz–López, E.T. Pecina–Treviño, and E. Orrantia–Borunda, A study of bioflotation of chalcopyrite and pyrrhotite mixtures in presence of ferrooxidans, Can. Metall. Q., 51(2001), No. 2, p. 118.

    Article  Google Scholar 

  4. S.A. Allison and C.T. O'Connor, An investigation into the flotation behaviour of pyrrhotite, Int. J. Miner. Process., 98(2011), No. 3–4, p. 202.

    Article  Google Scholar 

  5. C. Tukel and S. Kelebek, Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression, Int. J. Miner. Process., 95(2010), No. 1–4, p. 47.

    Article  Google Scholar 

  6. A.P. Chandra and A.R. Gerson, A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite, Adv. Colloid Interface Sci., 145(2009), No. 1–2, p. 97.

    Article  Google Scholar 

  7. X.Y. Qiu, X.F. Ma, X.J. He, and C.S. Luo, Research progress in flotation separation of pyrrhotite from chalcopyrite, Min. Eng., 12(2011). No. 6, p. 29.

    Google Scholar 

  8. Q. Zhang, Y.H. Hu, G.H. Gu, and J. Xu, Selective flotation separation of jamesonite from pyrrhotite by lime, Min. Metall. Eng., 24(2004), No. 2, p. 30.

    Google Scholar 

  9. A. Gül, A.E. Yüce, A.A. Sirkeci, and M. Özer, Use of non–toxic depressants in the selective flotation of copper–lead–zinc ores, Can. Metall. Q., 47(2008), No. 2, p. 111.

    Article  Google Scholar 

  10. Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine–xanthate as depressant, Miner. Eng., 74(2015), p. 86.

    Article  Google Scholar 

  11. R.H. Yoon, C.I. Basilio, M.A. Marticorena, A.N. Kerr, and R. Stratton–Crawley, A study of the pyrrhotite depression mechanism by diethylenetriamine, Miner. Eng., 8(1995), No. 7, p. 807.

    Article  Google Scholar 

  12. E. Bogusz, S.R. Brienne, I. Butler, S.R. Rao, and J.A. Finch, Metal ions and dextrin adsorption on pyrite, Miner. Eng., 10(1997), No. 4, p. 441.

    Article  Google Scholar 

  13. N.J. Bolin and J.S. Laskowski, Polysaccharides in flotation of sulfides (Part II): Copper/lead separation with dextrin and sodium hydroxide, Int. J. Miner. Process., 33(1991), No. 1–4, p. 235.

    Article  Google Scholar 

  14. J. Xu, W. Sun, Q. Zhang, and Y.H. Hu, Research on depression mechanism of pyrite and pyrrhotite by new organic depressant RC, Min. Metall. Eng., 23(2003), No. 6, p. 27.

    Google Scholar 

  15. W. Sun, R.Q. Liu, X.F. Cao, and Y.H. Hu, Flotation separation of marmatite from pyrrhotite using DMPS as depressant, Trans. Nonferrous Met. Soc. China, 16(2006), p. 671.

    Article  Google Scholar 

  16. S. Kelebek and C. Tukel, The effect of sodium metabisulfite and triethylenetetramine system on pentlandite–pyrrhotite separation, Int. J. Miner. Process., 57(1999), No. 2, p. 135.

    Article  Google Scholar 

  17. D. Kim, Studies of the pyrrhotite depression mechanism with diethylenetriamine, Bull. Korean Chem. Soc., 19(1998), No. 8, p. 840.

    Google Scholar 

  18. M.F. Cai, Z. Dang, Y.W. Chen, and N. Belzile, The passivation of pyrrhotite by surface coating, Chemosphere, 61(2005), No. 5, p. 659.

    Article  Google Scholar 

  19. Y.W. Chen, Y.R. Li, M.F. Cai, N. Belzile, and Z. Dang, Preventing oxidation of iron sulfide minerals by polyethylene polyamines, Miner. Eng., 19(2006), No. 1, p. 19.

    Article  Google Scholar 

  20. Q. Liu, D. Wannas, and Y.J. Peng, Exploiting the dual functions of polymer depressants in fine particle flotation, Int. J. Miner. Process., 80(2006), No. 2–4, p. 244.

    Article  Google Scholar 

  21. M. J. Pearse, An overview of the use of chemical reagents in mineral processing, Miner. Eng., 18(2005), No. 2, p. 139.

    Article  Google Scholar 

  22. J.H. Chen, Y.Q. Li, and Y. Chen, Cu−S flotation separation via the combination of sodium humate and lime in a low pH medium, Miner. Eng., 24(2011), No. 1, p. 58.

    Article  Google Scholar 

  23. C. Tukel and S. Kelebek, Modulation of xanthate action by sulphite ions in pyrrhotite deactivation/depression, Int. J. Miner. Process., 95(2010), No. 1–4, p. 47.

    Article  Google Scholar 

  24. R.R. Castro, C.M.M. Silva, R.M. Nunes, P.L.R. Cunha, R.C.M. de Paula, J.P.A. Feitosa, V.C.C. Girão, M.M.L. Pompeu, J.A.D. Leite, and F.A.C. Rocha, Structural characteristics are crucial to the benefits of guar gum in experimental osteoarthritis, Carbohydr. Polym., 150(2016), p. 392.

    Article  Google Scholar 

  25. F.S. Chen, H.F. Xu, S.L. Wang, and L. Zheng, A study on preparation of low viscosity guar gum and its strengthening performance, China Pulp Paper Ind., 33(2012), No. 2, p.13.

    Google Scholar 

  26. E. Frollini, W.F. Reed, M. Milas, and M. Rinaudo, Polyelectrolytes from polysaccharides: Selective oxidation of guar gum–a revisited reaction, Carbohydr. Polym., 27(1995), No. 2, p. 129.

    Article  Google Scholar 

  27. H.H. Gong, M.Z. Liu, B. Zhang, D.P. Cui, C.M. Gao, B. Ni, and J.C. Chen, Synthesis of oxidized guar gumby drymethod and its application in reactive dye printing, Int. J. Biol. Macromol., 49(2011), No. 5, p. 1083.

    Article  Google Scholar 

  28. P.G. Shortridge, P.J. Harris, D.J. Bradshaw, and L.K. Koopal, The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc, Int. J. Miner. Process., 59(2000), No. 3, p. 215.

    Article  Google Scholar 

  29. K.L. Zhao, W. Yan, X.H. Wang, B. Hui, G.H. Gu, and H. Wang, The flotation separation of pyrite from pyrophyllite using oxidized guar gum as depressant, Int. J. Miner. Process., (2017), No. 161, p. 78.

    Google Scholar 

  30. E.T. Pecina, M. Rodríguez, P. Castillo, V. Diaz, and E. Orrantia, Effect of leptospirillum ferrooxidans on the flotation kinetics of sulphide ores, Miner. Eng., 22(2009), No. 5, p. 462.

    Article  Google Scholar 

  31. S. Kelebek and B. Nanthakumar, Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation, Int. J. Miner. Process., 84(2007), No. 1–4, p. 69.

    Article  Google Scholar 

  32. J.D. Miller, J. Li, J.C. Davidtz, and F. Vos, A review of pyrrhotite flotation chemistry in the processing of PGM ores, Miner. Eng., 18(2005), No. 8, p. 855.

    Article  Google Scholar 

  33. G. Fairthorne, J.S. Brinen, D. Fornasiero, D.R. Nagaraj, and J. Ralston, Spectroscopic and electrokinetic study of the adsorption of butyl ethoxycarbonyl thiourea on chalcopyrite, Int. J. Miner. Process., 54(1998), No. 3–4, p. 147.

    Article  Google Scholar 

  34. W. Lin, J. Tian, J. Ren, P. Xu, Y. Dai, and S. Sun, Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution, Environ. Sci. Pollut. Res., 23(2015), No. 1, p. 785.

    Article  Google Scholar 

  35. A.N. Buckley, G.A. Hope, G.K. Parker, J. Steyn, and R. Woods, Mechanism of mixed dithiophosphate and mercaptobenzothiazole collectors for Cu sulfide ore minerals, Miner. Eng., 109(2017), p. 80.

    Article  Google Scholar 

  36. T. Zhang and W.Q. Qin, Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate, J. Cent. South Univ., 22(2015), No. 4, p. 1232.

    Article  Google Scholar 

  37. R.K. Rath, S. Subramanian, and T. Pradeep, Surface chemical studies on pyrite in the presence of polysaccharide–based flotation depressants, J. Colloid Interface Sci., 229(2000), No. 1, p. 82.

    Article  Google Scholar 

  38. M. Messali, H. Lgaz, R. Dassanayake, R. Salghi, S. Jodeh, N. Abidi, and O. Hamed, Guar gum as efficient non–toxic inhibitor of carbon steel corrosion in phosphoric acid medium: electrochemical, surface, DFT and MD simulations studies, J. Mol. Struct., 1145(2017), p. 43.

    Google Scholar 

  39. R.K. Rath, S. Subramanian, V. Sivanandam, and T. Pradeep, Studies on the interaction of guar gum with chalcopyrite, Can. Metall. Q., 40(1999), No. 1, p. 1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Key Technology R&D Program of China (No. 2015BAB12B02) and the Science and Technology Planning Project Guangdong Province, China (No. 2013B090800016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-hua Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Gu, Gh., Li, Lj. et al. The selective effect of food-grade guar gum on chalcopyrite–monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector. Int J Miner Metall Mater 25, 1123–1131 (2018). https://doi.org/10.1007/s12613-018-1663-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1663-y

Keywords

Navigation