Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Nb–Mo–ZrB2 composites (V(Nb)/V(Mo) = 1) with 15vol% or 30vol% of ZrB2 were fabricated by hot-pressing sintering at 2000°C. The phases, microstructure, and mechanical properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb–Mo–ZrB2 composites increases with increasing ZrB2 content; Nb–Mo–30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb–Mo–ZrB2 composites is mainly attributed to the secondary phase strengthening of the stiffer ZrB phase, solid- solution strengthening of the (Nb, Mo)ss matrix as well as fine-grain strengthening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes of the Nb–Mo–ZrB2 composites are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), 7, p. 776.

    Article  Google Scholar 

  2. Y. Tan, C.L. Ma, A. Kasama, R. Tanaka, and J.M. Yang, High temperature mechanical behavior of Nb-Mo-ZrC alloys, Mater. Sci. Eng, A, 335(2003), No. 1–2, p. 260.

    Article  Google Scholar 

  3. J.L. Li, W. Wang, and C.G. Zhou, Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy, Int. J. Miner. Metall. Mater., 24(2017), 3, p. 289.

    Article  Google Scholar 

  4. K. Guan, L.N. Jia, B. Kong, S.N. Yuan, and H. Zhang, Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite: Based on a mechanical characterization of interfacial strength, Mater. Sci. Eng, A, 663(2016), p. 98.

    Article  Google Scholar 

  5. A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti–Nb–Zr–Fe–O alloy, Int. J. Miner. Metall. Mater., 24(2017), 8, p. 909.

    Article  Google Scholar 

  6. Y.L. Guo, L.N Jia, B. Kong, H.R. Zhang, and H. Zhang, Simultaneous improvement in fracture toughness and oxidation resistance of Nb-Si based alloys by vanadium addition, Mater. Sci. Eng, A, 701(2017), p. 149.

    Article  Google Scholar 

  7. M. Sharma and V. Sharma, Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite, Int. J. Miner. Metall. Mater., 23(2016), 2, p. 222.

    Article  Google Scholar 

  8. Y.L. Guo, L.N. Jia, B. Kong, S.N. Zhang, J.B. Sha, and H. Zhang, Microstructure transition from lamellar eutectic to anomalous eutectic of Nb–Si based alloy powders by heat treatment and spark plasma sintering, J. Alloys Compd., 696(2017), p. 516.

    Article  Google Scholar 

  9. Z.P. Sun, J.M. Guo, C. Zhang, X.P. Guo, and X.D. Tian, Effect of Ti and Al interaction on microstructures and mechanical properties of the Nb-Ti-Si-Al alloys, Rare Met. Mater. Eng., 45(2016), 7, p. 1678.

    Article  Google Scholar 

  10. Q. Huang, C.L. Ma, X.Q. Zhao, and H.B. Xu, Phase equilibria in Nb–Si–Mo ternary alloys at 1 273K and 2 073K, Chinese J. Aeronaut., 21(2008), 5, p. 448.

    Article  Google Scholar 

  11. N. Nomura, K. Yoshimi, and S. Hanada, Mechanical properties of Mo–Nb–TiC in-situ composites synthesized by hot-pressing, Mater Trans JIM, 41(2000), 12, p. 1599.

    Article  Google Scholar 

  12. B.X. Wei, Y.J. Wang, Y.W. Zhao, D. Wang, G.M. Song, Y.D. Fu, and Y. Zhou, Effect of NbC content on microstructure and mechanical properties of W-NbC composites, Int. J. Refract. Met. Hard Mater., 70(2018), p. 66.

    Article  Google Scholar 

  13. P. Mannan, G. Casillas, and E.V. Pereloma, The effect of Nb solute and NbC precipitates on dynamic and metadynamic recrystallisation in Ni–30Fe–Nb–C model alloys, Mater. Sci. Eng, A, 700(2017), p. 116.

    Article  Google Scholar 

  14. X. Sun, W.B. Han, P. Hu, Z. Wang, and X.H. Zhang, Microstructure and mechanical properties of ZrB2-Nb composite, Int. J. Refract. Met. Hard Mater., 28(2010), 3, p. 472.

    Article  Google Scholar 

  15. S.M. Zhu, W.G. Fahrenholtz, and G.E. Hilmas, Enhanced densification and mechanical properties of ZrB2-SiC processed by a preceramic polymer coating route, Scripta Mater., 59(2008), 1, p. 123.

    Article  Google Scholar 

  16. H.L. Wang, D.L. Chen, C.A. Wang, R. Zhang, and D.N. Fang, Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process, Int. J. Refract. Met. Hard Mater., 27(2009), 6, p. 1024.

    Article  Google Scholar 

  17. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagram, American Society for Metals, Ohioan(OH), 1986, p. 253.

    Google Scholar 

  18. G.F. William, E.H. Gregory, G.T. Inna, and A.Z. James, Refractory diborides of zirconium and hafnium, J.Am. Ceram. Soc., 90(2007), 5, p. 1347.

    Article  Google Scholar 

  19. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby, High-strength zirconium diboride-based ceramics, J. Am. Ceram. Soc., 87(2004), 6, p. 1170.

    Article  Google Scholar 

  20. F. Monteverde, S. Guicciardi, and A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater Sci. Eng, A, 346(2003), No. 1–2, p. 310.

    Article  Google Scholar 

  21. F. Monteverde and A. Bellosi, Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2, Adv. Eng. Mater., 5(2003), 7, p. 508.

    Article  Google Scholar 

  22. Q.B. Nguyen and M. Gupta, Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates, Compos. Sci.Technol., 68(2008), No. 10–11, p. 2185.

    Article  Google Scholar 

  23. X.J. Zhang, Y.S. Zhong, M.W. Li, Y.Y. Qin, F. Xu, X.D. He, and Y.B. Li, In-situ precipitated network structure and high-temperature compressive behavior of Nb–Ti–C–B composites, J. Alloys Compd., 613(2014), p. 25.

    Article  Google Scholar 

  24. A. Saxena, N. Singh, D. Kumar, and P. Gupta, Effect of ceramic reinforcement on the properties of metal matrix nanocomposites, Materials Today: Proceedings, 4(2017), 4, p. 5561.

    Article  Google Scholar 

  25. M.F. Ashby, F.J. Blunt, and M. Bannister, Flow characteristics of highly constrained metal wires, Acta Metall., 37(1989), 7, p. 1847.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 11372110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-de Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, Zd., Wang, Q. et al. Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering. Int J Miner Metall Mater 25, 824–831 (2018). https://doi.org/10.1007/s12613-018-1631-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1631-6

Keywords

Navigation