Skip to main content
Log in

Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The water leaching process of vanadium, sodium, and silicon from molten vanadium-titanium-bearing (V-Ti-bearing) slag obtained from low-grade vanadium-bearing titanomagnetite was investigated systematically. The results show that calcium titanate, sodium aluminosilicate, sodium oxide, silicon dioxide and sodium vanadate are the major components of the molten V-Ti-bearing slag. The experimental results indicate that the liquid-solid (L/S) mass ratio significantly affects the leaching process because of the respective solubilities and diffusion rates of the components. A total of 83.8% of vanadium, 72.8% of sodium, and 16.1% of silicon can be leached out via a triple counter-current leaching process under the optimal conditions of a particle size below 0.074 mm, a temperature of 90°C, a leaching time of 20 min, an L/S mass ratio of 4:1, and a stirring speed of 300 r/min. The kinetics of vanadium leaching is well described by an internal diffusion-controlled model and the apparent activation energy is 11.1 kJ/mol. The leaching mechanism of vanadium was also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Imtiaz, M. S. Rizwan, S. L. Xiong, H. L. Li, M. Ashraf, S. M. Shahzad, M. Shahzad, M. Rizwan, and S. X. Tu, Vanadium recent advancements and research prospects: a review, Environ. Int., 80 (2015), p. 79.

    Article  Google Scholar 

  2. R. R. Moskalyk and A. M. Alfantazi, Processing of vanadium: A review, Miner. Eng., 16 (2003), No. 9, p. 793.

    Article  Google Scholar 

  3. X. Y. Chen, X. Z. Lan, Q. L. Zhang, H. Z. Ma, and J. Zhou, Leaching vanadium by high concentration sulfuric acid from stone coal, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 1, p. s123.

    Article  Google Scholar 

  4. X. B. Li, Z. G. Deng, C. Wei, C. X. Li, M. T. Li, G. Fan, and H. Huang, Solvent extraction of vanadium from a stone coal acidic leach solution using D2EHPA/TBP: continuous testing, Hydrometallurgy, 154 (2015), p. 40.

    Article  Google Scholar 

  5. D. Pradhan, A. K. Patra, D. J. Kim, H. S. Chung, and S. W. Li, A novel sequential process of bioleaching and chemical leaching for dissolving Ni, V, and Mo from spent petroleum refinery catalyst, Hydrometallurgy, 131-132 (2013), p. 114.

    Article  Google Scholar 

  6. E. Nazari, F. Rashchi, M. Saba, and S. M. J. Mirazimi, Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology, Waste Manage., 34 (2014), No. 12, p. 2687.

    Article  Google Scholar 

  7. X. L. Chen, X. Q. Cao, B. L. Zou, J. Gong, and C. Sun, Corrosion of lanthanum magnesium hexaaluminate as plasmasprayed coating and as bulk material when exposed to molten V2O5-containing salt, Corros. Sci., 91 (2015), p. 185.

    Article  Google Scholar 

  8. H. G. Du, Theory of Smelting V and Ti-magnetite by Blast Furnace, Science Press, Beijing, 1996, p. 45.

    Google Scholar 

  9. L. Zhang, L. N. Zhang, M. Y. Wang, G. Q. Li, and Z. T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20 (2007), No. 7, p. 684.

    Article  Google Scholar 

  10. H. M. Lu, J. B. Xu, and Q. Li, Study on smelting reduction of coal-containing pellets of V-Ti bearing beach placers by combined rotary hearth furnace and direct current arc furnace, [in] Energy Technology 2012: Carbon Dioxide Management and Other Technologies, Orlando, 2012, p. 109.

    Google Scholar 

  11. D. S. Chen, L. S. Zhao, T. Qi, G. P. Hu, H. X. Zhao, J. Li, and L. N. Wang, Desilication from titanium-vanadium slag by alkaline leaching, Trans. Nonferrous Met. Soc. China, 23 (2013), No. 10, p. 3076.

    Article  Google Scholar 

  12. G. Q. Zhang, T. A. Zhang, G. Z. Lü, Y. Zhang, Y. Liu, and L. L. Zhuo, Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching, Int. J. Miner. Metall. Mater., 22 (2015), No. 1, p. 21.

    Article  Google Scholar 

  13. X. S. Li and B. Xie, Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching, Int. J. Miner. Metall. Mater., 19 (2012), No. 7, p. 595.

    Article  Google Scholar 

  14. Q. Guo, J. K. Qu, B. B. Han, G. Y. Wei, P. Y. Zhang, and T. Qi, Dechromization and dealumination kinetics in process of Na2CO3-roasting pretreatment of laterite ores, Trans. Nonferrous Met. Soc. China, 24 (2014), No. 12, p. 3979.

    Article  Google Scholar 

  15. Q. Guo, Basic Research and Application on Alkali-roasting Activation Pretreatment of Limonitic Laterite Ore [Dissertation], University of Chinese Academy of Sciences, Beijing, 2011, p. 59.

    Google Scholar 

  16. G. Silversmita, D. Deplaa, H. Poelmana, G. B. Marinb, and R. D. Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron. Spectrosc. Relat. Phenom. 135 (2004), No. 2-3, p. 167.

    Article  Google Scholar 

  17. W. C. Song, H. Li, F. X. Zhu, K. Li, and Q. Zheng, Extraction of vanadium from molten vanadium bearing slag by oxidation with pure oxygen in the presence of CaO, Trans. Nonferrous Met. Soc. China, 24 (2014), No. 8, p. 2687.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-sheng Chen or Tao Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Yy., Yi, Ly., Zhao, W. et al. Leaching of vanadium, sodium, and silicon from molten V-Ti-bearing slag obtained from low-grade vanadium-bearing titanomagnetite. Int J Miner Metall Mater 23, 898–905 (2016). https://doi.org/10.1007/s12613-016-1305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1305-1

Keywords

Navigation