Skip to main content
Log in

Damage prediction of 7025 aluminum alloy during equal-channel angular pressing

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci., 45(2000), p. 103.

    Article  Google Scholar 

  2. R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), p. 881.

    Article  Google Scholar 

  3. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann. Manuf. Technol., 57(2008), p. 716.

    Article  Google Scholar 

  4. T.G. Langdon, Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement, Acta Mater., 61(2013), p. 7035.

    Article  Google Scholar 

  5. M. Shaarbaf and M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process, Mater. Sci. Eng. A, 473(2008), p. 28.

    Article  Google Scholar 

  6. A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53(2008), p. 893.

    Article  Google Scholar 

  7. Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao, and B.G. Yuan, Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure, Mater. Sci. Eng. A, 541(2012), p. 98.

    Article  Google Scholar 

  8. C.P. Wang, F.G. Li, Q.H. Li, and L. Wang, Numerical and experimental studies of pure copper processed by a new severe plastic deformation method, Mater. Sci. Eng. A, 548(2012), p. 19.

    Article  Google Scholar 

  9. V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A, 271(1999), p. 322.

    Article  Google Scholar 

  10. B.Q. Han and T.G. Langdon, Improving the high-temperature mechanical properties of a magnesium alloy by equal-channel angular pressing, Mater. Sci. Eng. A, 410–411(2005), p. 435.

    Article  Google Scholar 

  11. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H.K. Kim, The influences of extrusion and equal channel angular pressing (ECAP) processes on the fatigue behavior of AM60 magnesium alloy, Mater. Sci. Eng. A, 565(2013), p. 308.

    Article  Google Scholar 

  12. W.J. Zhao, H. Ding, Y.P. Ren, S.M. Hao, J. Wang, and J.T. Wang, Finite element simulation of deformation behavior of pure aluminum during equal channel angular pressing, Mater. Sci. Eng. A, 410–411(2005), p. 348.

    Article  Google Scholar 

  13. A. Rebhi, T. Makhlouf, N. Njah, Y. Champion, and J.P. Couzinié, Characterization of aluminum processed by equal channel angular extrusion: effect of processing route, Mater. Charact., 60(2009), p. 1489.

    Article  Google Scholar 

  14. C.J. Luis-Pérez, R. Luri-Irigoyen, and D. Gastón-Ochoa, Finite element modelling of an Al-Mn alloy by equal channel angular extrusion (ECAE), J. Mater. Process. Technol., 153–154(2004), p. 846.

    Article  Google Scholar 

  15. F.Q. Yang, A. Saran, and K. Okazaki, Finite element simulation of equal channel angular extrusion, J. Mater. Process. Technol., 166(2005), p. 71.

    Article  Google Scholar 

  16. H.S. Kim, M.H. Seo, and S.I. Hong, On the die corner gap formation in equal channel angular pressing, Mater. Sci. Eng. A, 291(2000), p. 86.

    Article  Google Scholar 

  17. S. Dumoulin, H.J. Roven, J.C. Werenskiold, and H.S. Valberg, Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry, Mater. Sci. Eng. A, 410–411(2005), p. 248.

    Article  Google Scholar 

  18. S.B. Xu, G.Q. Zhao, X.W. Ma, and G.C. Ren, Finite element analysis and optimization of equal channel angular pressing for producing ultra-fine grained materials, J. Mater. Process. Technol., 184(2007), p. 209.

    Article  Google Scholar 

  19. H.S. Kim, M.H. Seo, and S.I. Hong, Plastic deformation analysis of metals during equal channel angular pressing, J. Mater. Process. Technol., 113(2001), p. 622.

    Article  Google Scholar 

  20. S.C. Yoon, P. Quang, S.I. Hong, and H.S. Kim, Die design for homogeneous plastic deformation during equal channel angular pressing, J. Mater. Process. Technol., 187–188(2007), p. 46.

    Article  Google Scholar 

  21. B.S. Moon, H.S. Kim, and S.I. Hong, Plastic flow and deformation homogeneity of 6061 Al during equal channel angular pressing, Scripta Mater., 46(2002), p. 131.

    Article  Google Scholar 

  22. S.C. Yoon, H.G. Jeong, S. Lee, and H.S. Kim, Analysis of plastic deformation behavior during back pressure equal channel angular pressing by the finite element method, Comput. Mater. Sci., 77(2013), p. 202.

    Article  Google Scholar 

  23. A.V. Nagasekhar, Y. Tick-Hon, and H.P. Seow, Deformation behavior and strain homogeneity in equal channel angular extrusion/pressing, J. Mater. Process. Technol., 192–193(2007), p. 449.

    Article  Google Scholar 

  24. V.N. Anumalasetty, T. Yip, S. Li, and H.P. Seow, Effect of acute tool-angles on equal channel angular extrusion/pressing, Mater. Sci. Eng. A, 410–411(2005), p. 269.

    Google Scholar 

  25. N.E. Mahallawy, F.A. Shehata, M.A.E. Hameed, M.I.A.E. Aal, and H.S. Kim, 3D FEM simulations for the homogeneity of plastic deformation in Al-Cu alloys during ECAP, Mater. Sci. Eng. A, 527(2010), p. 1404.

    Article  Google Scholar 

  26. S.K. Lu, H.Y. Liu, L. Yu, Y.L. Jiang, and J.H. Su, 3D FEM simulations for the homogeneity of plastic deformation in aluminum alloy HS6061-T6 during ECAP, Procedia Eng., 12(2011), p. 35.

    Article  Google Scholar 

  27. M.S. Ghazani and B. Eghbali, Finite element simulation of cross equal channel angular pressing, Comput. Mater. Sci., 74(2013), p. 124.

    Article  Google Scholar 

  28. X.N. Zhang, L. Hua, and Y.X. Liu, FE simulation and experimental investigation of ZK60 magnesium alloy with different radial diameters processed by equal channel angular pressing, Mater. Sci. Eng. A, 535(2012), p. 153.

    Article  Google Scholar 

  29. R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon, The evolution of damage in perfect-plastic and strain hardening materials processed by equal-channel angular pressing, Mater. Sci. Eng. A, 518(2009), p. 124.

    Article  Google Scholar 

  30. F. Djavanroodi and M. Ebrahimi, Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation, Mater. Sci. Eng. A, 527(2010), p. 1230.

    Article  Google Scholar 

  31. R.K. Oruganti, P.R. Subramanian, J.S. Marte, M.F. Gigliotti, and S. Amancherla, Effect of friction, backpressure and strain rate sensitivity on material flow during equal channel angular extrusion, Mater. Sci. Eng. A, 406(2005), p. 102.

    Article  Google Scholar 

  32. F. Djavanroodi and M. Ebrahimi, Effect of die parameters and material properties in ECAP with parallel channels, Mater. Sci. Eng. A, 527(2010), p. 7593.

    Article  Google Scholar 

  33. A.T. Male and M.G. Cockcroft, A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation, J. Inst. Met., 93(1964), p. 38.

    Google Scholar 

  34. H.J. Hu, D.F. Zhang, and F.S. Pan, Die structure optimization of equal channel angular extrusion for AZ31 magnesium alloy based on finite element method, Trans. Nonferrous Met. Soc. China, 20(2010), p. 259.

    Article  Google Scholar 

  35. P. Venkatachalam, S.R. Kumar, B. Ravisankar, V.T. Paul, and M. Vijayalakshmi, Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China, 20(2010), p. 1822.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, M., Attarilar, S., Gode, C. et al. Damage prediction of 7025 aluminum alloy during equal-channel angular pressing. Int J Miner Metall Mater 21, 990–998 (2014). https://doi.org/10.1007/s12613-014-1000-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-1000-z

Keywords

Navigation