Skip to main content

Advertisement

Log in

An Update and Translational Perspective in Genetics and Genomics of Breast Cancer

  • Review
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to explore the multifaceted landscape of breast cancer, focusing on the crucial role of genetic and genomic studies in understanding its heterogeneity and guiding personalized treatment strategies. It seeks to address the genetic underpinnings of breast cancer and the potential for developing targeted therapies.

Recent Findings

Recent advancements in genome-wide analysis and next-generation sequencing technologies have significantly advanced our understanding of the genetic complexities of breast cancer. Key discoveries include gene copy number alterations, mutational signatures, and intricate patterns of intra-tumoral heterogeneity. Specific genetic aberrations, such as the “kataegis” phenomenon and mutations in the integrin signaling pathway, have been identified, providing new avenues for therapeutic intervention. These findings highlight the diversity of breast cancer subtypes, including triple-negative breast cancer (TNBC), and underscore the importance of personalized medicine.

Summary

The review concludes that dissecting the genomic landscape of breast cancer reveals significant genetic diversity and potential targets for therapy. Identifying specific genetic alterations holds promise for developing targeted therapies, emphasizing the necessity of personalized medicine in breast cancer care. Despite challenges in integrating these genetic insights into clinical practice, the potential for more effective and tailored treatment approaches is substantial. Future research should focus on overcoming these challenges to fully realize the benefits of personalized medicine for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A, Breast, Cancer—Epidemiology. Risk factors, classification, prognostic markers, and current treatment Strategies—An updated review. Cancers. 2021;13:4287. https://doi.org/10.3390/cancers13174287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rahman WT, Helvie MA. Breast cancer screening in average and high-risk women. Best Pract Res Clin Obstet Gynecol. 2022;83:3–14. https://doi.org/10.1016/j.bpobgyn.2021.11.007.

    Article  Google Scholar 

  3. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. Cancer J Clin. 2007;57(1):43–66. https://doi.org/10.3322/canjclin.57.1.43.

    Article  Google Scholar 

  4. Standring S, editor. Gray’s Anatomy E-Book: Gray’s Anatomy E-Book. Elsevier Health Sciences; 2021, p. 22.

  5. Zhu W, Nelson CM. Adipose and mammary epithelial tissue engineering. Biomatter. 2013;3(3):e24630. https://doi.org/10.4161/biom.24630.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Javed A, Lteif A. Development of the human breast. In: Seminars in plastic surgery (Vol. 27, No. 01). Thieme Medical Publishers; 2013. pp. 005–012. https://doi.org/10.1055/s-0033-1343989.

  7. Johnson MC, Cutler ML. Anatomy and physiology of the breast. In: Jatoi I, Rody A, editors. Management of breast diseases. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-46356-8_1.

    Chapter  Google Scholar 

  8. Al-Shami K, Awadi S, Alsheikh AM, Al-Sharif S, Ala’Bereshy R, Al-Eitan SF, Banikhaled SH, Al-Qudimat A, Al-Zoubi RM, Al Zoubi MS. Estrogens and the risk of breast cancer: a narrative review of literature. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e20224.

  9. Yue W, Wang JP, Li Y, Fan P, Liu G, Zhang N, Conaway M, Wang H, Korach KS, Bocchinfuso W, Santen R. Effects of estrogen on breast cancer development: role of estrogen receptor independent mechanisms. Int J Cancer. 2010;127(8):1748–57. https://doi.org/10.1002/ijc.25207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhou Z, Qiao JX, Shetty A, et al. RETRACTED ARTICLE: regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci. 2014;71:1549. https://doi.org/10.1007/s00018-013-1376-3.

    Article  PubMed  CAS  Google Scholar 

  11. Ercan C, van Diest PJ, Vooijs M. Mammary development and breast cancer: the role of stem cells. Curr Mol Med. 2011;11:270–85. https://doi.org/10.2174/156652411795678007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Feng Y, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106. https://doi.org/10.1016/j.gendis.2018.05.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013;155(4):750–764. https://doi.org/10.1016/j.cell.2013.10.029.

  14. Alvarado M, Ozanne E, Esserman L. Overdiagnosis and overtreatment of breast cancer. American Society of Clinical Oncology. Educational Book. 2012;32(1):e40–5. https://doi.org/10.14694/EdBook_AM.2012.32.30.

    Article  Google Scholar 

  15. Hophan SL, Odnokoz O, Liu H, Luo Y, Khan S, Gradishar W, Zhou Z, Badve S, Torres MA. Yong Wan, Ductal carcinoma in situ of breast: From molecular etiology to therapeutic management. Endocrinology 2022;163(4):bqac027, https://doi.org/10.1210/endocr/bqac027.

  16. Chen W, Guimei Wang, and, Zhang G. Insights into the transition of ductal carcinoma in situ to invasive ductal carcinoma: morphology, molecular portraits, and the tumor microenvironment. Cancer Biology Med. 2022;19:1487. https://doi.org/10.20892/j.issn.2095-3941.2022.0440.

    Article  CAS  Google Scholar 

  17. Piri L, Welcsh M-C, King. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human Mol Genet. 2001;10(7):705–713, https://doi.org/10.1093/hmg/10.7.705.

  18. Mylavarapu S, Das A, Roy M. Role of BRCA mutations in the modulation of response to platinum therapy. Front Oncol. 2018;8:16. https://doi.org/10.3389/fonc.2018.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blondeaux E, Arecco L, Punie K, Graffeo R, Toss A, De Angelis C, Trevisan L, Buzzatti G, Linn SC, Dubsky P, Cruellas M. Germline TP53 pathogenic variants and breast cancer: a narrative review. Cancer Treat Rev. 2023;114:102522. https://doi.org/10.1016/j.ctrv.2023.102522.

    Article  PubMed  CAS  Google Scholar 

  20. Chubb D, Broderick P, Dobbins S, et al. Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer. Nat Commun. 2016;7:11883. https://doi.org/10.1038/ncomms11883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ayal B, Gussow EV, Koonin N, Auslander. Identification of combinations of somatic mutations that predict cancer survival and immunotherapy benefit. NAR Cancer. 2021;3:zcab017. https://doi.org/10.1093/narcan/zcab017.

    Article  Google Scholar 

  22. Gasparyan M, Lo MC, Jiang H, Lin CC, Sun D. Combined p53-and PTEN-deficiency activates expression of mesenchyme homeobox 1 (MEOX1) required for growth of triple-negative breast cancer. J Biol Chem. 2020;295(34):12188–202. https://doi.org/10.1074/jbc.RA119.010710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yuan T, Cantley L. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510. https://doi.org/10.1038/onc.2008.245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, Pajuste K, Rucins M, Yamani NE, Longhin EM, et al. Epigenetics in breast Cancer therapy—new strategies and future nanomedicine perspectives. Cancers. 2020;12:3622. https://doi.org/10.3390/cancers12123622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303–11. https://doi.org/10.1111/j.1399-0004.2011.01809.x.

    Article  PubMed  CAS  Google Scholar 

  26. McCabe MT, Brandes JC, Vertino PM. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res. 2009;15(12):3927–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56. https://doi.org/10.1200/JCO.2004.07.151.

    Article  PubMed  CAS  Google Scholar 

  28. Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Sig Transduct Target Ther. 2019;4:62. https://doi.org/10.1038/s41392-019-0095-0.

    Article  Google Scholar 

  29. Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, et al. BRCA1 promoter hypermethylation is associated with good prognosis and chemosensitivity in triple-negative breast cancer. Cancers. 2020;12:828. https://doi.org/10.3390/cancers12040828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ades F, Tryfonidis K, Zardavas D. The past and future of breast cancer treatment—from the papyrus to individualised treatment approaches. Ecancermedicalscience. 2017;11. https://doi.org/10.3332/ecancer.2017.746.

  31. Mutebi M, Anderson BO, Duggan C, Adebamowo C, Agarwal G, Ali Z, Bird P. Breast cancer treatment: a phased approach to implementation. Cancer 126(S10):2365–78. https://doi.org/10.1002/cncr.32910.

  32. Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol. 2022;12:960317. https://doi.org/10.3389/fonc.2022.960317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Asaoka M, Gandhi S, Ishikawa T, Takabe K. Neoadjuvant chemotherapy for breast cancer: past, present, and future. Breast Cancer: Basic Clin Res. 2020;14. https://doi.org/10.1177/1178223420980377.

  34. Gambardella V, Tarazona N, Cejalvo JM, Lombardi P, Huerta M, Roselló S, Fleitas T, Roda D, Cervantes A. Personalized medicine: recent progress in Cancer Therapy. Cancers. 2020;12:1009. https://doi.org/10.3390/cancers12041009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rakha EA, Tse GM, Quinn CM. An update on the pathological classification of breast cancer. Histopathology. 2023;82(1):5–16. https://doi.org/10.1111/his.14786.

    Article  PubMed  Google Scholar 

  36. Jögi A, Vaapil M, Johansson M, Påhlman S. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci. 2012;117(2):217–24. https://doi.org/10.3109/03009734.2012.659294.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Giuliano AE, Edge SB, Hortobagyi GN. Eighth edition of the AJCC cancer staging manual: breast cancer. Ann Surg Oncol. 2018;25:1783–5. https://doi.org/10.1245/s10434-018-6486-6.

    Article  PubMed  Google Scholar 

  38. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021;124:13–26. https://doi.org/10.1038/s41416-020-01161-4.

    Article  PubMed  Google Scholar 

  39. Mouttet D, Laé M, Caly M, Gentien D, Carpentier S, Peyro-Saint-Paul H, Vincent-Salomon A, Rouzier R, Sigal-Zafrani B, Sastre-Garau X, Reyal F. Estrogen-receptor, progesterone-receptor and HER2 status determination in invasive breast cancer. Concordance between immuno-histochemistry and MapQuant™ microarray based assay. PLoS ONE. 2016;11(2):e0146474. https://doi.org/10.1371/journal.pone.0146474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zattarin E, Leporati R, Ligorio F, Lobefaro R, Vingiani A, Pruneri G, Vernieri C. Hormone receptor loss in breast cancer: molecular mechanisms, clinical settings, and therapeutic implications. Cells. 2020;9:2644. https://doi.org/10.3390/cells9122644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cuyún, Carter, Gebra, et al. Prognostic factors in hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2–) advanced breast cancer: a systematic literature review. Cancer Manage Res. 2021;6537–66. https://doi.org/10.2147/CMAR.S300869.

  42. Goldberg J, Pastorello RG, Vallius T, Davis J, Cui YX, Agudo J, Waks AG, Keenan T, McAllister SS, Tolaney SM, Mittendorf EA. The immunology of hormone receptor positive breast cancer. Front Immunol. 2021;12:674192. https://doi.org/10.3389/fimmu.2021.674192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chlebowski RT, et al. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. JNCI: J Natl Cancer Inst. 2007;99:1695–705. https://doi.org/10.1093/jnci/djm224.

    Article  PubMed  CAS  Google Scholar 

  44. Rakha EA, Reis-Filho JS, Baehner F, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:207. https://doi.org/10.1186/bcr2607.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kamel HFM, Hiba Saeed A, Bagader Al-Amodi. Exploitation of gene expression and cancer biomarkers in paving the path to era of personalized medicine. Genom Proteom Bioinform. 2017;15(4):220–35. https://doi.org/10.1016/j.gpb.2016.11.005.

    Article  CAS  Google Scholar 

  46. Karagiannis GS, Goswami S, Jones JG, Oktay MH, Condeelis JS. Signatures of breast cancer metastasis at a glance. J Cell Sci. 2016;129(9):1751–8. https://doi.org/10.1242/jcs.183129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bie Y, Zhang Z, Wang X. Adjuvant chemo-radiotherapy in the sandwich method for high risk endometrial cancer—a review of literature. BMC Womens Health. 2015;15:50. https://doi.org/10.1186/s12905-015-0207-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Colombo PE, Milanezi F, Weigelt B, et al. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res. 2011;13:212. https://doi.org/10.1186/bcr2890.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68. https://doi.org/10.1186/bcr2635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Fragomeni SM, Sciallis A, Jeruss JS. Molecular subtypes and local-regional control of breast cancer. Surg Oncol Clin. 2018;27(1):95–120. https://doi.org/10.1016/j.soc.2017.08.005.

    Article  Google Scholar 

  51. Prekovic S, et al. Luminal breast cancer identity is determined by loss of glucocorticoid receptor activity. EMBO Mol Med. 2023;15:e17737. https://doi.org/10.15252/emmm.202317737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9(2):176–98. https://doi.org/10.1158/2159-8290.CD-18-1177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dias K, Dvorkin-Gheva A, Hallett RM, Wu Y, Hassell J, Pond GR, Levine M, Whelan T, Bane AL. Claudin-low breast cancer; clinical & pathological characteristics. PLoS ONE. 2017;12(1):e0168669. https://doi.org/10.1371/journal.pone.0168669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cho N. Molecular subtypes and imaging phenotypes of breast cancer. Ultrasonography. 2016;35(4):281–8. https://doi.org/10.14366/usg.16030.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Guarneri V, de Azambuja E. Anthracyclines in the treatment of patients with early breast cancer. ESMO Open. 2022;7(3). https://doi.org/10.1016/j.esmoop.2022.100461.

  56. Bergamino MA et al. HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2 + breast cancer. EBioMedicine. 2022;83. https://doi.org/10.1016/j.ebiom.2022.104205.

  57. Rej RK, Roy J, Allu SR. Therapies for the treatment of advanced/metastatic estrogen receptor-positive breast cancer: current situation and future directions. Cancers. 2024;16:552. https://doi.org/10.3390/cancers16030552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. de Gregorio A, Janni W, Friedl TWP, et al. The impact of anthracyclines in intermediate and high-risk HER2-negative early breast cancer—a pooled analysis of the randomised clinical trials PlanB and SUCCESS C. Br J Cancer. 2022;126:1715–24. https://doi.org/10.1038/s41416-021-01690-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bhattacharyya G, Shankar, et al. Overview of breast cancer and implications of overtreatment of early-stage breast cancer: an Indian perspective. JCO Global Oncol. 2020;6:789–98. https://doi.org/10.1200/GO.20.00033.

    Article  Google Scholar 

  60. Ashok Kumar, Prashanth, et al. Adjuvant chemotherapy in premenopausal patients with hormone-positive breast cancer with a recurrence score of 16–25: a retrospective analysis using the National Cancer Database. JCO Precision Oncol. 2024;8:e2300390. https://doi.org/10.1200/PO.23.0039.

    Article  Google Scholar 

  61. Zheng W. Molecular classification of Endometrial Cancer and the 2023 FIGO staging: exploring the challenges and opportunities for pathologists. Cancers. 2023;15:4101. https://doi.org/10.3390/cancers15164101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yordanova M, Hassan S. The role of the 21-Gene recurrence Score® assay in hormone receptor-positive, node-positive breast cancer: the Canadian experience. Curr Oncol. 2022;29:2008–20. https://doi.org/10.3390/curroncol29030163.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Metzger-Filho O et al. Genomic Grade Index (GGI): feasibility in routine practice and impact on treatment decisions in early breast cancer. PLoS ONE. 2013;8(8):e66848. https://doi.org/10.1371/journal.pone.0066848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhao Y, Evelien Schaafsma, and, Cheng C. Gene signature-based prediction of triple‐negative breast cancer patient response to neoadjuvant chemotherapy. Cancer Med. 2020;9:6281–95. https://doi.org/10.1002/cam4.3284.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kay C, Martinez-Perez C, Dixon JM, Turnbull AK. The role of nodes and nodal assessment in diagnosis, treatment and prediction in ER+, node-positive breast Cancer. J Pers Med. 2023;13:1476. https://doi.org/10.3390/jpm13101476.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang J, Li B, Luo M, et al. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Sig Transduct Target Ther. 2024;9:83. https://doi.org/10.1038/s41392-024-01779-3.

    Article  CAS  Google Scholar 

  67. Goutsouliak K, Veeraraghavan J, Sethunath V, et al. Towards personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol. 2020;17:233–50. https://doi.org/10.1038/s41571-019-0299-9.

    Article  PubMed  Google Scholar 

  68. Sun J, et al. Lapatinib combined with neoadjuvant paclitaxel-trastuzumab-based chemotherapy in patients with human epidermal growth factor receptor 2-positive breast cancer: a meta-analysis of randomized controlled trials. Oncol Lett. 2015;9(3):1351–8. https://doi.org/10.3892/ol.2015.2848.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Alba E, Albanell J, de la Haba J, et al. Trastuzumab or lapatinib with standard chemotherapy for HER2-positive breast cancer: results from the GEICAM/2006-14 trial. Br J Cancer. 2014;110:1139–47. https://doi.org/10.1038/bjc.2013.831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22:101–26. https://doi.org/10.1038/s41573-022-00579-0.

    Article  PubMed  CAS  Google Scholar 

  71. Bruzas S, Gluz O, Harbeck N, et al. Gene signatures in patients with early breast cancer and relapse despite pathologic complete response. npj Breast Cancer. 2022;8:42. https://doi.org/10.1038/s41523-022-00403-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cardoso F, et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29. https://doi.org/10.1056/NEJMoa1602253.

    Article  PubMed  CAS  Google Scholar 

  73. Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer. Nat Rev Dis Primers. 2019;5:66. https://doi.org/10.1038/s41572-019-0111-2.

    Article  PubMed  Google Scholar 

  74. Guo L, Kong D, Liu J, et al. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol. 2023;12:3. https://doi.org/10.1186/s40164-022-00363-1.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Malhotra GK, et al. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10(10):955–60. https://doi.org/10.4161/cbt.10.10.13879.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zagami P, Carey LA. Triple negative breast cancer: pitfalls and progress. NPJ Breast Cancer. 2022;8:95. https://doi.org/10.1038/s41523-022-00468-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sharma P. Biology and management of patients with triple-negative breast cancer. Oncologist. 2016;21(9):1050–1062. https://doi.org/10.1634/theoncologist.2016-0067.

  78. Yin L, Duan JJ, Bian XW, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61. https://doi.org/10.1186/s13058-020-01296-5.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chang C-M, et al. Interleukin-10: a double-edged sword in breast cancer. Tzu Chi Med J. 2021;33(3):203–11. https://doi.org/10.4103/tcmj.tcmj_162_20.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang X. Explore genomic profiles for triple-negative breast cancer to discover drug targets. Oncogenomics (2019): 423–440. https://doi.org/10.1016/B978-0-12-811785-9.00030-2.

  81. Ortiz Valdez, Eric et al. Characterization of triple negative breast cancer gene expression profiles in Mexican patients. Mol Clin Oncol. 2023;18(1):1–11. https://doi.org/10.3892/mco.2022.2601.

  82. Feng J, Wang L, Zhang K, et al. Identification and panoramic analysis of drug response-related genes in triple negative breast cancer using as an example NVP-BEZ235. Sci Rep. 2023;13:5984. https://doi.org/10.1038/s41598-023-32757-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Paik S, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26. https://doi.org/10.1056/NEJMoa041588.

    Article  PubMed  CAS  Google Scholar 

  84. Van De Vijver MJ et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009. https://doi.org/10.1056/NEJMoa021967.

    Article  PubMed  Google Scholar 

  85. Sotiriou C et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006;98(4):262–72. https://doi.org/10.1093/jnci/djj052.

    Article  PubMed  CAS  Google Scholar 

  86. Sánchez-Navarro I, Gámez-Pozo A, Pinto Á, et al. An 8-gene qRT-PCR-based gene expression score that has prognostic value in early breast cancer. BMC Cancer. 2010;10:336. https://doi.org/10.1186/1471-2407-10-336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Yau C, Esserman L, Moore DH, et al. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12:R85. https://doi.org/10.1186/bcr2753.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Staaf J, et al. Identification of subtypes in human epidermal growth factor receptor 2–positive breast cancer reveals a gene signature prognostic of outcome. J Clin Oncol. 2010;28:1813–20. https://doi.org/10.1200/JCO.2009.22.8775.

    Article  PubMed  Google Scholar 

  89. Wang X, Collet L, Rediti M, Debien V, De Caluwé A, Venet D, Romano E, Rothé F, Sotiriou C, Buisseret L. Predictive biomarkers for response to Immunotherapy in Triple negative breast Cancer: promises and challenges. J Clin Med. 2023;12:953. https://doi.org/10.3390/jcm12030953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gupta N, Verma VK. Next-generation sequencing and its application: empowering in public health beyond reality. In: Arora P, editor. Microbial technology for the welfare of society. Microorganisms for sustainability. Volume 17. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-8844-6_15.

    Chapter  Google Scholar 

  91. Dentro SC, et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184. 2021;8:2239–54. https://doi.org/10.1016/j.cell.2021.03.009.

    Article  CAS  Google Scholar 

  92. Lebok P, Kopperschmidt V, Kluth M, et al. Partial PTEN deletion is linked to poor prognosis in breast cancer. BMC Cancer. 2015;15:963. https://doi.org/10.1186/s12885-015-1770-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Stephens P, Tarpey P, Davies H, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400–4. https://doi.org/10.1038/nature11017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Shi Y, Jin J, Ji W, et al. Therapeutic landscape in mutational triple negative breast cancer. Mol Cancer. 2018;17:99. https://doi.org/10.1186/s12943-018-0850-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Banerji S, Cibulskis K, Rangel-Escareno C, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405–9. https://doi.org/10.1038/nature11154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Xu J, Yang P, Xue S, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet. 2019;138:109–24. https://doi.org/10.1007/s00439-019-01970-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Arnedos M, Bihan C, Delaloge S, Andre F. Triple-negative breast cancer: are we making headway at least? Therapeutic Adv Med Oncol. 2012;4(4):195–210. https://doi.org/10.1177/1758834012444711.

    Article  CAS  Google Scholar 

  98. Ramón y Cajal S, Sesé M, Capdevila C, et al. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med. 2020;98:161–77. https://doi.org/10.1007/s00109-020-01874-2.

    Article  PubMed  Google Scholar 

  99. Shah S, Roth A, Goya R, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–9. https://doi.org/10.1038/nature10933.

    Article  PubMed  CAS  Google Scholar 

  100. Veerla S, Staaf J. Kataegis in clinical and molecular subgroups of primary breast cancer. NPJ Breast Cancer. 2024;10:32. https://doi.org/10.1038/s41523-024-00640-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Shilova ON, Tsyba DL, Shilov ES. Mutagenic activity of AID/APOBEC deaminases in Antiviral Defense and Carcinogenesis. Mol Biol. 2022;56:46–58. https://doi.org/10.1134/S002689332201006X.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all the members of IIITDM Kurnool and Government Medical College and Hospital, Nizamabad, who have given necessary throughputs in drafting the manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

K.U: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (equal); Methodology (equal); Writing-original draft (lead); Writing-review & editing (equal). L.G.P: Methodology (equal), and Writing-review & editing (equal). R.C: Writing-review & editing (equal). E.S.R: Writing-review & editing (equal). D.S.: Conceptualization (equal); Methodology (equal); Formal analysis (lead); Investigation (equal); Writing-review & editing (lead). S.K: Formal analysis (lead); Investigation (equal); Methodology (equal); Writing-original draft (lead); Writing-review & editing (equal).

Corresponding authors

Correspondence to Kovuri Umadevi or Dola Sundeep.

Ethics declarations

The authors declare that the manuscript is prepared by obeying the Ethical Standards as described in the Committee on Publication Ethics (COPE).

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Consent of Participation/Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umadevi, K., Priyanka, L.G., Clementina, R. et al. An Update and Translational Perspective in Genetics and Genomics of Breast Cancer. Curr Breast Cancer Rep 17, 4 (2025). https://doi.org/10.1007/s12609-024-00567-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12609-024-00567-w

Keywords