Skip to main content

Advertisement

Log in

The Role of PIK3CA Mutations as A Predictor of Outcomes and A Therapeutic Target

  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

The development of individualized therapies for the treatment of breast cancer continues to evolve at a rapid pace. Recent genome-wide efforts have uncovered new information regarding common genetic alterations that are present at high frequencies in human breast cancers. Among these, mutations in the gene encoding the p110α catalytic subunit of PI3kinase, PIK3CA, are commonly present in breast cancers, with a mutational frequency of approximately 25%. Importantly, three “hotspot” mutations comprise 80% to 90% of PIK3CA mutations, allowing for rapid analysis of tumor samples to determine the mutational status of a patient’s cancer. In this article, we discuss the current views regarding the use of PIK3CA mutations as biomarkers for prognosis as well as predictors of response to therapies. We also review ongoing efforts to target mutant PIK3CA and the PI3kinase pathway and briefly discuss how mutant PIK3CA status may be useful as a predictive marker of response to these newer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wood LD, Parsons DW, Jones S, et al.: The genomic landscapes of human breast and colorectal cancers. Science 2007, 318:1108–1113.

    Article  PubMed  CAS  Google Scholar 

  2. Bachman KE, Argani P, Samuels Y, et al.: The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 2004, 3:772–775.

    Article  PubMed  CAS  Google Scholar 

  3. Samuels Y, Wang Z, Bardelli A, et al.: High frequency of mutations of the PIK3CA gene in human cancers. Science 2004, 304:554.

    Article  PubMed  CAS  Google Scholar 

  4. Cantley LC: The phosphoinositide 3-kinase pathway. Science 2002, 296:1655–1657.

    Article  PubMed  CAS  Google Scholar 

  5. Volinia S, Hiles I, Ormondroyd E, et al.: Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics 1994, 24:472–477.

    Article  PubMed  CAS  Google Scholar 

  6. Mandelker D, Gabelli SB, Schmidt-Kittler O, et al.: A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc Natl Acad Sci U S A 2009, 106:16996–17001.

    Article  PubMed  Google Scholar 

  7. Huang CH, Mandelker D, Schmidt-Kittler O, et al.: The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science 2007, 318:1744–1748.

    Article  PubMed  CAS  Google Scholar 

  8. Huang CH, Mandelker D, Gabelli SB, Amzel LM: Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle 2008, 7:1151–1156.

    PubMed  CAS  Google Scholar 

  9. Woodward WA, Strom EA, Tucker SL, et al.: Changes in the 2003 American Joint Committee on Cancer staging for breast cancer dramatically affect stage-specific survival. J Clin Oncol 2003, 21:3244–3248.

    Article  PubMed  Google Scholar 

  10. Wolff AC, Hammond ME, Schwartz JN, et al.: American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007, 25:118–145.

    Article  PubMed  CAS  Google Scholar 

  11. Berry DA, Cirrincione C, Henderson IC, et al.: Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 2006, 295:1658–1667.

    Article  PubMed  CAS  Google Scholar 

  12. Bordeleau L, Panchal S, Goodwin P: Prognosis of BRCA-associated breast cancer: a summary of evidence. Breast Cancer Res Treat 2009 Sep 30 [Epub ahead of print].

  13. Fong PC, Boss DS, Yap TA, et al.: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009, 361:123–134.

    Article  PubMed  CAS  Google Scholar 

  14. Barbareschi M, Buttitta F, Felicioni L, et al.: Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas. Clin Cancer Res 2007, 13:6064–6069.

    Article  PubMed  CAS  Google Scholar 

  15. Ellis MJ, Lin L, Crowder R, et al.: Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat 2010, 119:379–390.

    Article  PubMed  CAS  Google Scholar 

  16. Loi S, Haibe-Kains B, Majjaj S, et al.: PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A 2101, 107:10208–10213.

    Article  Google Scholar 

  17. Kalinsky K, Jacks LM, Heguy A, et al.: PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 2009, 15:5049–5059.

    Article  PubMed  CAS  Google Scholar 

  18. Lopez-Knowles E, O’Toole SA, McNeil CM, et al.: PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. Int J Cancer 2101, 126:1121–1131.

  19. Li SY, Rong M, Grieu F, Iacopetta B: PIK3CA mutations in breast cancer are associated with poor outcome. Breast Cancer Res Treat 2006, 96:91–95.

    Article  PubMed  CAS  Google Scholar 

  20. Aleskandarany MA, Rakha EA, Ahmed MA, et al.: PIK3CA expression in invasive breast cancer: a biomarker of poor prognosis. Breast Cancer Res Treat 2009 Aug 22 [Epub ahead of print]

  21. Isakoff SJ, Engelman JA, Irie HY, et al.: Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res 2005, 65:10992–11000.

    Article  PubMed  CAS  Google Scholar 

  22. Knuefermann C, Lu Y, Liu B, et al.: HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 2003, 22:3205–3212.

    Article  PubMed  CAS  Google Scholar 

  23. • Liedtke C, Cardone L, Tordai A, et al.: PIK3CA-activating mutations and chemotherapy sensitivity in stage II-III breast cancer. Breast Cancer Res 2008, 10:R27. This is a clinical study demonstrating no association with mutant PIK3CA and response to neoadjuvant chemotherapy.

  24. Crowder RJ, Phommaly C, Tao Y, et al.: PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 2009, 69:3955–3962.

    Article  PubMed  CAS  Google Scholar 

  25. Yue W, Wang JP, Conaway MR, et al.: Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol 2003, 86:265–274.

    Article  PubMed  CAS  Google Scholar 

  26. Vogel CL, Cobleigh MA, Tripathy D, et al.: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002, 20:719–726.

    Article  PubMed  CAS  Google Scholar 

  27. Cobleigh MA, Vogel CL, Tripathy D, et al.: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999, 17:2639–2648.

    PubMed  CAS  Google Scholar 

  28. Press MF, Finn RS, Cameron D, et al.: HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy in women with metastatic breast cancer. Clin Cancer Res 2008, 14:7861–7870.

    Article  PubMed  CAS  Google Scholar 

  29. Siena S, Sartore-Bianchi A, Di Nicolantonio F, et al.: Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009, 101:1308–1324.

    Article  PubMed  CAS  Google Scholar 

  30. Kataoka Y, Mukohara T, Shimada H, et al.: Association between gain-of-function mutations in PIK3CA and resistance to HER2-targeted agents in HER2-amplified breast cancer cell lines. Ann Oncol 2009, 21:255–262.

    Article  PubMed  Google Scholar 

  31. Berns K, Horlings HM, Hennessy BT, et al.: A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007, 12:395–402.

    Article  PubMed  CAS  Google Scholar 

  32. Eichhorn PJ, Gili M, Scaltriti M, et al.: Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 2008, 68:9221–9230.

    Article  PubMed  CAS  Google Scholar 

  33. Toi M, Iwata H, Fujiwara Y, et al.: Lapatinib monotherapy in patients with relapsed, advanced, or metastatic breast cancer: efficacy, safety, and biomarker results from Japanese patients phase II studies. Br J Cancer 2009, 101:1676–1682.

    Article  PubMed  CAS  Google Scholar 

  34. Nahta R, Yuan LX, Du Y, Esteva FJ: Lapatinib induces apoptosis in trastuzumab-resistant breast cancer cells: effects on insulin-like growth factor I signaling. Mol Cancer Ther 2007, 6:667–674.

    Article  PubMed  CAS  Google Scholar 

  35. Blackwell KL, Burstein HJ, Storniolo AM, et al.: Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol 2010, 28:1124–1130.

    Article  PubMed  CAS  Google Scholar 

  36. Geyer CE, Forster J, Lindquist D, et al.: Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006, 355:2733–2743.

    Article  PubMed  CAS  Google Scholar 

  37. Vlahos CJ, Matter WF, Hui KY, Brown RF: A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994, 269:5241–5248.

    PubMed  CAS  Google Scholar 

  38. Schultz RM, Merriman RL, Andis SL, et al.: In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 1995, 15:1135–1139.

    PubMed  CAS  Google Scholar 

  39. Maira SM, Stauffer F, Brueggen J, et al.: Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008, 7:1851–1863.

    Article  PubMed  CAS  Google Scholar 

  40. Serra V, Markman B, Scaltriti M, et al.: NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008, 68:8022–8030.

    Article  PubMed  CAS  Google Scholar 

  41. Brachmann SM, Hofmann I, Schnell C, et al.: Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A 2009, 106:22299–22304.

    Article  PubMed  Google Scholar 

  42. Folkes AJ, Ahmadi K, Alderton WK, et al.: The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin -4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 2008, 51:5522–5532.

    Article  PubMed  CAS  Google Scholar 

  43. Raynaud FI, Eccles SA, Patel S, et al.: Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 2009, 8:1725–1738.

    Article  PubMed  CAS  Google Scholar 

  44. Yao E, Zhou W, Lee-Hoeflich ST, et al.: Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clin Cancer Res 2009, 15:4147–4156.

    Article  PubMed  CAS  Google Scholar 

  45. Salphati L, Wong H, Belvin M, et al.: Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel PI3K Inhibitor 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941). Drug Metab Dispos 2010 Jun 10 [Epub ahead of print].

  46. Junttila TT, Akita RW, Parsons K, et al.: Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 2009, 15:429–440.

    Article  PubMed  CAS  Google Scholar 

  47. Edgar KA, Wallin JJ, Berry M, et al.: Isoform-specific phosphoinositide 3-kinase inhibitors exert distinct effects in solid tumors. Cancer Res 2010, 70:1164–1072.

    Article  PubMed  CAS  Google Scholar 

  48. O’Brien C, Wallin JJ, Sampath D, et al.: Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res 2010 May 7 [Epub ahead of print].

  49. Yaguchi S, Fukui Y, Koshimizu I, et al.: Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 2006, 98:545–556.

    Article  PubMed  CAS  Google Scholar 

  50. Kong D, Dan S, Yamazaki K, Yamori T: Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Eur J Cancer 2010, 46:1111–1121.

    Article  PubMed  CAS  Google Scholar 

  51. Dan S, Yoshimi H, Okamura M, et al.: Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G0/G1 arrest. Biochem Biophys Res Commun 2009, 379:104–109.

    Article  PubMed  CAS  Google Scholar 

  52. Kong D, Okamura M, Yoshimi H, Yamori T: Antiangiogenic effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor. Eur J Cancer 2009, 45:857–865.

    Article  PubMed  CAS  Google Scholar 

  53. Knight ZA, Gonzalez B, Feldman ME, et al.: A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 2006, 125:733–747.

    Article  PubMed  CAS  Google Scholar 

  54. Korur S, Huber RM, Sivasankaran B, et al.: GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 2009, 4:7443.

    Article  CAS  Google Scholar 

  55. Beurel E, Blivet-Van Eggelpoel MJ, Kornprobst M, et al.: Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem Pharmacol 2009, 77:54–65.

    Article  PubMed  CAS  Google Scholar 

  56. Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H: Inactivation of glycogen synthase kinase-3beta, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Mol Cancer Ther 2007, 6:1151–1158.

    Article  PubMed  CAS  Google Scholar 

  57. Cao Q, Lu X, Feng YJ: Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res 2006, 2009, 16:671–677.

    Google Scholar 

  58. • Gustin JP, Karakas B, Weiss MB, et al.: Knockin of mutant PIK3CA activates multiple oncogenic pathways. Proc Natl Acad Sci U S A 2009, 106:2835–2840. This article demonstrates that oncogenic PIK3CA mutations lead to activation of mitogen-activated protein kinase pathway and that PIK3CA mutations predict for sensitivity to lithium using in vitro and in vivo preclinical models.

  59. Wang Z, Smith KS, Murphy M, et al.: Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008, 455:1205–1209.

    Article  PubMed  CAS  Google Scholar 

  60. Chen D, Cui QC, Yang H, Dou QP: Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 2006, 66:10425–10433.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang H, Chen D, Ringler J, et al.: Disulfiram treatment facilitates phosphoinositide 3-kinase inhibition in human breast cancer cells in vitro and in vivo. Cancer Res 2009, 70:3996–4004.

    Article  CAS  Google Scholar 

  62. Diehl F, Schmidt K, Durkee KH, et al.: Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 2008, 135:489–498.

    Article  PubMed  CAS  Google Scholar 

  63. Board RE, Wardley AM, Dixon JM, et al.: Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat 2009, 120:461–467.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GMW is supported by a Medical Scientist Training Program award (GM007309). BHP acknowledges support from The Breast Cancer Research Foundation, Susan G. Komen for the Cure, NIH/NCI (CA109274, CA88843), and the Avon Foundation.

Disclosure

BHP is a consultant for and has received research funding from GlaxoSmithKline and is a consultant for Horizon Discovery LTD. These agreements are subject to the policies and procedures regarding conflicts of interest as per The Johns Hopkins University School of Medicine guidelines. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Ho Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G.M., Park, B.H. The Role of PIK3CA Mutations as A Predictor of Outcomes and A Therapeutic Target. Curr Breast Cancer Rep 2, 167–173 (2010). https://doi.org/10.1007/s12609-010-0022-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-010-0022-4

Keywords

Navigation