Skip to main content

Advertisement

Log in

Mycosubtilin Induces G1 Phase Block and Autophagy in Cervical Cancer HeLa Cells

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Cyclic lipopeptides secreted by the probiotic bacterium Bacillus subtilis have attracted much attention due to their antitumor activities and low toxicity. However, the role of Mycosubtilin (Myco) in the prevention and treatment of cervical cancer remains unclear. In the present study, we conducted a systematic evaluation of Myco’s anti-cervical cancer effects to identify its molecular mechanism of action using proteomics technology. The results reveal that Myco inhibited the growth of HeLa and SiHa cervical cancer cell lines in a dose-dependent (3–15 µg/mL) and time-dependent (12–48 h) manner and significantly reduced colony formation and migration in HeLa cells, highlighting its potential to suppress tumor spread. Moreover, autophagosome and autolysosome numbers were significantly increased after Myco treatment, and the expression of autophagy-related proteins was significantly modulated, suggesting that autophagy plays a role in its anti-cancer mechanism. Myco treatment also induced G1 phase cell cycle arrest in HeLa cells, as confirmed by proteomics analysis. Myco was shown to induce cell cycle arrest in HeLa cells by regulating the P53 pathway and autophagy-dependent cell death via the PI3K/AKT/mTOR signaling pathway, demonstrating its multidimensional effect on cervical cancer cell growths. Myco treatment significantly inhibited tumor growth in vivo in a nude mouse cervical cancer xenograft model, providing direct evidence of its potential as a therapeutic candidate for cervical cancer. Given its unique anti-cancer mechanism and significant therapeutic efficacy, Myco should be considered a promising therapeutic agent for cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

Myco:

Mycosubtilin

DMSO:

Dimethyl sulfoxide

HPLC:

High-performance liquid chromatography

DMEM:

Dulbecco’s modified eagle medium

RPMI:

Roswell park memorial institute

CCK- 8:

Cell counting kit-8

G1:

First gap

S:

Synthesis

G2:

Second gap

M:

Metaphase

BS-Z15:

Bacillus subtilis-Z15

H&E:

Hematoxylin and eosin

OD:

Optical density

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

RNase A:

Ribonuclease A

MDC:

Monodansulfonyl cadaverine

3-MA:

3-Methyladenine

RIAP:

Radio immunoprecipitation assay

BCA:

Bicinchoninic acid

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene fluoride

TBST:

Tris-buffered saline and Tween 20

ECL:

Enhanced chemiluminescence

IC50 :

Half maximal inhibitory concentration

DDP:

Diamminedichloroplatinum

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  1. Lei J, Arroyo-Mühr LS, Lagheden C et al (2022) Human papillomavirus infection determines prognosis in cervical cancer. J Clin Oncol 40:1522–1528. https://doi.org/10.1200/JCO.21.01930

    Article  CAS  PubMed  Google Scholar 

  2. Marret G, Borcoman E, Tourneau CL (2019) Pembrolizumab for the treatment of cervical cancer. Expert Opinion on Biological Therapy

  3. Liu Y, Li T, Guo R et al (2023) The vaginal microbiota among the different status of human papillomavirus infection and bacterial vaginosis. J Med Virol 95:e28595. https://doi.org/10.1002/jmv.28595

    Article  CAS  PubMed  Google Scholar 

  4. Florea A-M, Busselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3:1351–1371. https://doi.org/10.3390/cancers3011351

    Article  CAS  PubMed  Google Scholar 

  5. Oun R, Moussa YE, Wheate NJ (2018) The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans 47:6645–6653. https://doi.org/10.1039/c8dt00838h

    Article  CAS  PubMed  Google Scholar 

  6. Fu R, Zhao B, Chen M et al (2023) Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Med Oncol 41:9. https://doi.org/10.1007/s12032-023-02237-w

    Article  CAS  PubMed  Google Scholar 

  7. Makovec T (2019) Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 53:148–158. https://doi.org/10.2478/raon-2019-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xia Y, Sun M, Huang H, Jin W-L (2024) Drug repurposing for cancer therapy. Signal Transduct Target Ther 9:92. https://doi.org/10.1038/s41392-024-01808-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qin R, You F-M, Zhao Q et al (2022) Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 15:133. https://doi.org/10.1186/s13045-022-01350-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhou Q, Meng Y, Li D et al (2024) Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 9:55. https://doi.org/10.1038/s41392-024-01769-5

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C (2024) Cancer cell metabolism and antitumour immunity. Nat Rev Immunol 24:654–669. https://doi.org/10.1038/s41577-024-01026-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng W, Shang H, Tong Y et al (2024) The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. Journal of Nanobiotechnology 22:97. https://doi.org/10.1186/s12951-024-02297-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Debnath J, Gammoh N, Ryan KM (2023) Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol 24:560–575. https://doi.org/10.1038/s41580-023-00585-z

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Wu Y, Meng S et al (2024) Selective autophagy in cancer: mechanisms, therapeutic implications, and future perspectives. Mol Cancer 23:22. https://doi.org/10.1186/s12943-024-01934-y

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mafi S, Ahmadi E, Meehan E et al (2023) The mTOR signaling pathway interacts with the ER stress response and the unfolded protein response in cancer. Cancer Res 83:2450–2460. https://doi.org/10.1158/0008-5472.CAN-22-3032

    Article  CAS  PubMed  Google Scholar 

  16. Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23:74–88. https://doi.org/10.1038/s41580-021-00404-3

    Article  CAS  PubMed  Google Scholar 

  17. Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 138:255–271. https://doi.org/10.1016/j.pharmthera.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  18. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14:130–146. https://doi.org/10.1038/nrd4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115. https://doi.org/10.1038/nrc.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramírez-Rendon D, Passari AK, Ruiz-Villafán B et al (2022) Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 106:1855–1878. https://doi.org/10.1007/s00253-022-11821-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Théatre A, Hoste ACR, Rigolet A et al (2022) Bacillus sp.: a remarkable source of bioactive lipopeptides. Adv Biochem Eng Biotechnol 181:123–179. https://doi.org/10.1007/10_2021_182

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Q, Lin R, Yang J et al (2023) Transcriptome analysis reveals that C17 mycosubtilin antagonizes Verticillium dahliae by interfering with multiple functional pathways of fungi. Biology (Basel) 12:513. https://doi.org/10.3390/biology12040513

    Article  CAS  PubMed  Google Scholar 

  23. Zhao H, Li J, Zhang Y et al (2018) Potential of iturins as functional agents: safe, probiotic, and cytotoxic to cancer cells. Food Funct 9:5580–5587. https://doi.org/10.1039/c8fo01523f

    Article  CAS  PubMed  Google Scholar 

  24. Aimaier R, Li H, Cao W et al (2023) The secondary metabolites of Bacillus subtilis strain Z15 induce apoptosis in hepatocellular carcinoma cells. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-023-10181-4

    Article  PubMed  Google Scholar 

  25. Blanchard OL, Smoliga JM (2015) Translating dosages from animal models to human clinical trials-revisiting body surface area scaling. Faseb J 29:1629–1634. https://doi.org/10.1096/fj.14-269043

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Q, Hao R, Wang W et al (2016) SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Mol Cell Biochem 420:171–184. https://doi.org/10.1007/s11010-016-2787-x

    Article  CAS  PubMed  Google Scholar 

  27. Ding S, Hong Y (2020) The fluorescence toolbox for visualizing autophagy. Chem Soc Rev 49:8354–8389. https://doi.org/10.1039/d0cs00913j

    Article  CAS  PubMed  Google Scholar 

  28. Olusola P, Banerjee HN, Philley JV, Dasgupta S (2019) Human papilloma virus-associated cervical cancer and health disparities. Cells 8:622. https://doi.org/10.3390/cells8060622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gökalp F (2021) The effective natural compounds for inhibiting cervical cancer. Med Oncol 38:12. https://doi.org/10.1007/s12032-021-01456-3

    Article  CAS  PubMed  Google Scholar 

  30. Tank JG, Pandya RV (2022) Anti-proliferative activity of surfactins on human cancer cells and their potential use in therapeutics. Peptides 155:170836. https://doi.org/10.1016/j.peptides.2022.170836

    Article  CAS  PubMed  Google Scholar 

  31. Vo TTT, Liu J-F, Wu C-Z et al (2020) Surfactin from Bacillus subtilis induces apoptosis in human oral squamous cell carcinoma through ROS-regulated mitochondrial pathway. J Cancer 11:7253–7263. https://doi.org/10.7150/jca.50835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li S, Ma Y-M, Zheng P-S, Zhang P (2018) GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res 37:80. https://doi.org/10.1186/s13046-018-0744-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamura K (2015) Development of cell-cycle checkpoint therapy for solid tumors. Jpn J Clin Oncol 45:1097–1102. https://doi.org/10.1093/jjco/hyv131

    Article  PubMed  Google Scholar 

  34. Icard P, Fournel L, Wu Z et al (2019) Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci 44:490–501. https://doi.org/10.1016/j.tibs.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  35. Suski JM, Braun M, Strmiska V, Sicinski P (2021) Targeting cell-cycle machinery in cancer. Cancer Cell 39:759–778. https://doi.org/10.1016/j.ccell.2021.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Engeland K (2022) Cell cycle regulation: p53–p21-RB signaling. Cell Death Differ 29:946–960. https://doi.org/10.1038/s41418-022-00988-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshida GJ (2017) Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol 10:67. https://doi.org/10.1186/s13045-017-0436-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nowosad A, Jeannot P, Callot C et al (2021) Publisher Correction: p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy–lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol 23:1048–1048. https://doi.org/10.1038/s41556-021-00741-7

    Article  CAS  PubMed  Google Scholar 

  39. Andrade-Tomaz M, de Souza I, Rocha CRR, Gomes LR (2020) The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. Cells 9:2140. https://doi.org/10.3390/cells9092140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu S, Yao S, Yang H et al (2023) Autophagy: regulator of cell death. Cell Death Dis 14:648. https://doi.org/10.1038/s41419-023-06154-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peng F, Liao M, Qin R et al (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7:286. https://doi.org/10.1038/s41392-022-01110-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tong X, Tang R, Xiao M et al (2022) Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 15:174. https://doi.org/10.1186/s13045-022-01392-3

    Article  PubMed  PubMed Central  Google Scholar 

  43. Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26:605–616. https://doi.org/10.1038/s41418-018-0252-y

    Article  CAS  PubMed  Google Scholar 

  44. Garnica P, Encío I, Plano D et al (2019) Organoseleno cytostatic derivatives: autophagic cell death with AMPK and JNK activation. Eur J Med Chem 175:234–246. https://doi.org/10.1016/j.ejmech.2019.04.074

    Article  CAS  PubMed  Google Scholar 

  45. Deng S, Shanmugam MK, Kumar AP et al (2019) Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 125:1228–1246. https://doi.org/10.1002/cncr.31978

    Article  PubMed  Google Scholar 

  46. Liu J, Liu P, Xu T et al (2020) Berberine induces autophagic cell death in acute lymphoblastic leukemia by inactivating AKT/mTORC1 signaling. Drug Des Devel Ther 14:1813–1823. https://doi.org/10.2147/DDDT.S239247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsieh C-L, Huang H-S, Chen K-C et al (2020) A novel salicylanilide derivative induces autophagy cell death in castration-resistant prostate cancer via ER stress-activated PERK signaling pathway. Mol Cancer Ther 19:101–111. https://doi.org/10.1158/1535-7163.MCT-19-0387

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Natural Science Foundation of China,No.32160074,Open project of Key Laboratory in Xinjiang,No.2020D4010

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Huixin Zhao, Qian Zhou and Xiufeng Pang; Data curation, Heping Zhao, Reyihanguli Aimaier and JunYang; Formal analysis, Dongyuan Zhou, Qian Zhou and Huixin Zhao; Funding acquisition,Huixin Zhao; Investigation, Haoran Li and Weiquan Wan; Methodology,Jinyu Li, Haoran Li; Project administration, Huixin Zhao; Resources, Huixin Zhao; Supervision, Xiufeng Pang; Writing-original draft, Haoran Li and Dongyuan Zhou; Writing -review & editing, Huixin Zhao.Huixin Zhao is the first corresponding author, and Qian Zhou and Professor Xiufeng Pang are the co corresponding authors. Haoran Li, Dongyuan Zhou and Weiquan Wang these authors contributed equally to this work and share first authorship. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiufeng Pang, Qian Zhou or Huixin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhou, D., Wang, W. et al. Mycosubtilin Induces G1 Phase Block and Autophagy in Cervical Cancer HeLa Cells. Probiotics & Antimicro. Prot. (2025). https://doi.org/10.1007/s12602-025-10534-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-025-10534-1

Keywords