Skip to main content
Log in

Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermentation Supernatant Containing Lactobacillus rhamnosus GG

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Kratom (Mitragyna speciosa) leaves are commonly used to enhance endurance and treat various diseases. This study evaluated the effect of kratom leaf fermentation with Lactobacillus rhamnosus. Antibacterial activity was investigated against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, and E. coli O157:H7. Biofilm inhibition and eradication assays were also performed. Antioxidant properties were determined by measuring the total phenolic and flavonoid content and DPPH and ABTS scavenging activities. Nitric oxide and TNF-α, IL-1β, and IL-6 expressions in LPS-stimulated RAW 264.7 macrophage cells were also measured. Aqueous kratom extract exhibited promising effects against free radicals and pro-inflammatory cytokines. Notably, all fermented kratoms showed significant antibacterial activity against the tested pathogens and antibiofilm formation by S. aureus and MRSA. Furthermore, the eradication of established biofilms of fermented kratoms was observed in S. aureus (day 2, 50 mg/mL) and E. coli (day 2, 100 mg/mL and day 4, 50 mg/mL). To the best of our knowledge, this study is the first to report that fermented and non-fermented kratoms could be nutraceutical sources of antibacterial, antibiofilm, antioxidant, and anti-inflammatory substances against related diseases and can be applied further in dietary or cosmetic products with health-promoting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This is not applicable.

References

  1. Raffa RB (2014) Kratom and Other Mitragynines: The Chemistry and Pharmacology of Opioids from a Non-opium Source; CRC Press

  2. Suwanlert S (1975) A study of kratom eaters in Thailand. Bull Narc 27(3):21–27

    CAS  PubMed  Google Scholar 

  3. Charoenratana S, Anukul C, Aramrattana A (2021) Attitudes towards kratom use, decriminalization and the development of a community-based kratom control mechanism in Southern Thailand. Int J Drug Policy 95:103197

    Article  PubMed  Google Scholar 

  4. Cinosi E, Martinotti G, Simonato P, Singh D, Demetrovics Z, Roman-Urrestarazu A et al (2015) Following “the roots” of kratom (Mitragyna speciosa): the evolution of an enhancer from a traditional use to increase work and productivity in Southeast Asia to a recreational psychoactive drug in Western countries. Biomed Res Int 2015:968786

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thanat N, Monthaka T, Siriporn P, Kwanroen S, Nootim P (2016) Traditional use of kratom (Mitragyna speciosa Korth) among folk healers in Southern Thailand. J Thai Tradition Altern Med 14(3):274–84

  6. Tanguay P (2011) Kratom in Thailand. Available from: https://ssrn.com/abstract=1908849 or https://doi.org/10.2139/ssrn.1908849

  7. Panyaphu D, Namkeard S, Inchai W, Kratom YK (2016) herbal medicine or nacrotic drug. Journal of Thai Traditional & Alternative Medicine 14(3):242–256

    Google Scholar 

  8. Meireles V, Rosado T, Barroso M, Soares S, Gonçalves J, Luís Â, Caramelo D, Simão AY, Fernández N, Duarte AP, Gallardo E (2019) Mitragyna speciosa: Clinical, toxicological aspects and analysis in biological and non-biological samples. Medicines (Basel, Switzerland) 6(1):35

  9. Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L, Tanna RS et al (2020) Chemical composition and biological effects of kratom (Mitragyna speciosa): in vitro studies with implications for efficacy and drug interactions. Sci Rep 10(1):19158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prevete E, Kuypers KPC, Theunissen EL, Corazza O, Bersani G, Ramaekers JG (2022) A systematic review of (pre)clinical studies on the therapeutic potential and safety profile of kratom in humans. Hum Psychopharmacol Clin Exp 37(1):e2805

    Article  Google Scholar 

  11. Adebo OA, Gabriela Medina-Meza I (2020) Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules (Basel, Switzerland) 25(4):927

  12. Ranadheera C, Vidanarachchi J, Rocha R, Cruz A, Ajlouni S (2017) Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 3(4):67

  13. Patil A, Munot N, Patwekar M, Patwekar F, Ahmad I, Alraey Y et al (2022) Encapsulation of lactic acid bacteria by lyophilisation with its effects on viability and adhesion properties. Evid Based Complement Alternat Med 2022:4651194

    Article  PubMed  PubMed Central  Google Scholar 

  14. Septembre-Malaterre A, Remize F, Poucheret P (2018) Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Res Int 104:86–99

    Article  CAS  PubMed  Google Scholar 

  15. Leonard W, Zhang P, Ying D, Adhikari B, Fang Z (2021) Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol Adv 49:107763

    Article  CAS  PubMed  Google Scholar 

  16. Kwon H-J, Ahn H, Kim BS, Kang S-S, Lee K-G (2022) Anti-bacterial and anti-inflammatory activities of lactic acid bacteria-bioconversioned indica rice (Oryza sativa L.) extract. Chem Biol Technol Agric 9(1):44

  17. Jiang M, Deng K, Jiang C, Fu M, Guo C, Wang X et al (2016) Evaluation of the antioxidative, antibacterial, and anti-inflammatory effects of the aloe fermentation supernatant containing Lactobacillus plantarum HM218749.1. Mediators Inflamm 2016:2945650

  18. López de Lacey AM, Pérez-Santín E, López-Caballero ME, Montero P (2014) Survival and metabolic activity of probiotic bacteria in green tea. LWT Food Sci Technol 55(1):314–22

  19. Antolak H, Piechota D, Kucharska A (2021) Kombucha tea-a double power of bioactive compounds from tea and Symbiotic Culture of Bacteria and Yeasts (SCOBY). Antioxidants 10(10):1541

  20. Nissen L, di Carlo E, Gianotti A (2020) Prebiotic potential of hemp blended drinks fermented by probiotics. Food Res Int 131:109029

    Article  CAS  PubMed  Google Scholar 

  21. Nissen L, Casciano F, Babini E, Gianotti A (2021) Prebiotic potential and bioactive volatiles of hemp byproduct fermented by lactobacilli. LWT 151:112201

    Article  CAS  Google Scholar 

  22. Romyasamit C, Saengsuwan P, Boonserm P, Thamjarongwong B, Singkhamanan K (2021) Optimization of cryoprotectants for freeze-dried potential probiotic Enterococcus faecalis and evaluation of its storage stability. Dry Technol 1–10

  23. (CLSI) CaLSI (2022) CLSI supplement M100. In: James S. Lewis II P, FIDSA, editor. Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed ed. USA

  24. Davis JL (2018) Chapter 2 - pharmacologic principles. In: Reed SM, Bayly WM, Sellon DC, editors. Equine Internal Medicine (Fourth Edition): W.B. Saunders p 79–137

  25. Sornsenee P, Chatatikun M, Mitsuwan W, Kongpol K, Kooltheat N, Sohbenalee S et al (2021) Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ 9:e12586

  26. Chatatikun M, Supjaroen P, Promlat P, Chantarangkul C, Waranuntakul S, Nawarat J, ... Chiabchalard A (2020) Antioxidant and tyrosinase inhibitory properties of an aqueous extract of Garcinia atroviridis Griff. ex. T. Anderson fruit pericarps. Pharmacogn J 12:71–79

  27. Asmerom D, Hailu GS, Yimer EM, Bitew H, Kahsay G (2020) Antimicrobial evaluation of latex and TLC fractions from the leaves of Aloe adigratana Reynolds. Evid Based Complement Alternat Med 2020:8312471

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vestby LK, Grønseth T, Simm R, Nesse LL (2020) Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 9(2):59

  29. Crouzet M, Le Senechal C, Brözel VS, Costaglioli P, Barthe C, Bonneu M et al (2014) Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 14(1):253

    Article  PubMed  PubMed Central  Google Scholar 

  30. Landini P, Antoniani D, Burgess JG, Nijland R (2010) Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 86(3):813–823

    Article  CAS  PubMed  Google Scholar 

  31. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  PubMed  Google Scholar 

  32. Nadar S, Khan T, Patching SG, Omri A (2022) Development of antibiofilm therapeutics strategies to overcome antimicrobial drug resistance. Microorganisms 10(2):303

  33. Schulze A, Mitterer F, Pombo JP, Schild S (2021) Biofilms by bacterial human pathogens: clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 8(2):28–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ruhal R, Kataria R (2021) Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 251:126829

    Article  CAS  PubMed  Google Scholar 

  35. Zhou L, Zhang Y, Ge Y, Zhu X, Pan J (2020) Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Front Microbiol 11:589640

  36. Seremet OC, Olaru OT, Gutu CM, Nitulescu GM, Ilie M, Negres S et al (2018) Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models. Mol Med Rep 17(6):7757–7763

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25(12):1822–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tripathi P, Tripathi P, Kashyap L, Singh V (2007) The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol 51(3):443–452

    Article  CAS  PubMed  Google Scholar 

  39. Nunes CDR, Barreto Arantes M, Menezes de Faria Pereira S, Leandro da Cruz L, de Souza Passos M, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D (2020) Plants as sources of anti-inflammatory agents. Molecules 25(16):3726

  40. Mocellin S, Bronte V, Nitti D (2007) Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev 27(3):317–352

    Article  CAS  PubMed  Google Scholar 

  41. Yoshioka Y, Yamamuro A, Maeda S (2003) Nitric oxide at a low concentration protects murine macrophage RAW264 cells against nitric oxide-induced death via cGMP signaling pathway. Br J Pharmacol 139(1):28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023

  43. Maroon JC, Bost JW, Maroon A (2010) Natural anti-inflammatory agents for pain relief. Surg Neurol Int 1:80

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mo YN, Cheng F, Yang Z, Shang XF, Liang JP, Shang RF, Hao BC, Wang XH, Zhang HJ, Wali A, Lu CF, Liu Y (2021) Antioxidant activity and the potential mechanism of the fruit from Ailanthus altissima Swingle. Front Vet Sci 8:784898

  45. Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB (2017) Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci 18(1):96

  46. Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S (2021) Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) leaves: Evaluation of its cytotoxicity and antinociceptive activity. Molecules 26(12):3704

  47. Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ (2013) Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J Herb Med 3(3):104–111

  48. Avello MA, Pastene ER, Bustos ED, Bittner ML, Becerra JA (2013) Variation in phenolic compounds of Ugni molinae populations and their potential use as antioxidant supplement. Rev Bras 23(1):44–50

    CAS  Google Scholar 

  49. Goldsmith CD, Vuong QV, Stathopoulos CE, Roach PD, Scarlett CJ (2014) Optimization of the aqueous extraction of phenolic compounds from olive leaves. Antioxidants (Basel) 3(4):700–712

    Article  PubMed  Google Scholar 

  50. Bezerra ANS, Massing LT, de Oliveira RB, Mourão RHV (2017) Standardization and anti-inflammatory activity of aqueous extract of Psittacanthus plagiophyllus Eichl. (Loranthaceae). J Ethnopharmacol 202:234–40

  51. Al-Manhel A, Niamah A (2015) Effect of aqueous and alcoholic plant extracts on inhibition of some types of microbes and causing spoilage of food. Pak J Food Sci 25:104–109

  52. Patwekar FI, Patwekar M, Asif M, Heroor S, Mohsin AA (2010) Activity guided separation of phytoconstituents from the flowers of Ichnocarpus frutescens L. and evaluation for antioxidant property. 1:318–23

  53. Manzur AGB, Sm Junior V, Morais-Costa F, Mariano EGA, Careli RT, da Silva LMV et al (2019) Extract of Mangifera indica L. leaves may reduce biofilms of Staphylococcus spp. in stainless steel and teatcup rubbers. Food Sci Technol Int 26(1):11–20

  54. Parthasarathy S, Bin Azizi J, Ramanathan S, Ismail S, Sasidharan S, Said MI et al (2009) Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae family) leaves. Molecules 14(10):3964–3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chojnacka K, Lewandowska U (2022) Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway. Food Rev Int 1–20

  56. Le Rouzic M, Bruniaux P, Raveschot C, Krier F, Phalip V, Ravallec R, … Coutte F (2023) Lactobacillus use for plant fermentation: New ways for plant-based product valorization. IntechOpen

  57. Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M (2021) New Insight into bacterial interaction with the matrix of plant-based fermented foods. Foods 10(7):1603

Download references

Acknowledgements

We are grateful for the excellent support during the experiments from the Research Institute for Health Sciences Walailak University, School of Allied Health Sciences, Walailak University. We are extremely grateful to Dr. Jirakrit Saetang for their kind help and recommendation during the current study.

Funding

This study was supported by the Walailak University, funded by Dr. CBD Co., Ltd., grant number WUSTP-10/2565.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.R. and P.S.; methodology, C.R. and P.S.; software, C.R.; validation, C.R.; formal analysis, C.R. and S.C.; investigation, C.R.; resources, C.R.; data curation, C.R. and P.S.; writing—original draft preparation, C.R., S.C. and P.S.; writing—review and editing, C.R., S.C. and P.S.; visualization, C.R.; supervision, C.R.; project administration, C.R.; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chonticha Romyasamit.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sornsenee, P., Chimplee, S. & Romyasamit, C. Evaluation of Antibacterial, Antibiofilm, Antioxidant, and Anti-Inflammatory Activities of Kratom Leaves (Mitragyna speciosa) Fermentation Supernatant Containing Lactobacillus rhamnosus GG. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10142-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10142-x

Keywords

Navigation