Skip to main content
Log in

Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The gut microbiome is one of the main factors affecting human health. It has been proven that probiotics can regulate the metabolism in the host body. A large number of people use probiotics not as medicines, but as a prophylactic supplement. The aim of our study was to evaluate the effect of lactic acid bacteria on the gut microbiome of healthy people using the V3 region of the 16S rRNA gene. Our study showed changes in the generic composition in the gut of healthy people when taking the supplement. There was an increase in the members responsible for the production of short-chain fatty acids in the gut of the host (Blautia, Fusicatenibacter, Eubacterium hallii group, Ruminococcus), as well as bacteria that improve intestinal homeostasis (Dorea and Barnesiella). There was also a decrease in the abundance of bacteria in the genera Catenibacterium, Hungatella, Escherichia-Shigella, and Pseudomonas, associated with an unhealthy profile of the human gut microbiome. An increase in members of the phylum Actinobacteriota was also observed, which has a positive effect on the host organism. Our results indicate that short-term prophylactic use of lactic acid bacteria-based supplements can be effective, as it contributes to a beneficial effect on the gut microbiome of healthy people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Sequencing data is available in NCBI BioProject database (BioProject:PRJNA 860108).

References

  1. Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6:39. https://doi.org/10.1177/1756283X12459294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gopalakrishnan V, Helmink BA, Spencer CN et al (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33:570–580. https://doi.org/10.1016/J.CCELL.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shadnoush M, Hosseini RS, Khalilnezhad A et al (2015) Effects of probiotics on gut microbiota in patients with inflammatory bowel disease: a double-blind, placebo-controlled clinical trial. Korean J Gastroenterol 65:215–221. https://doi.org/10.4166/KJG.2015.65.4.215

    Article  PubMed  Google Scholar 

  4. Salem I, Ramser A, Isham N, Ghannoum MA (2018) The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. https://doi.org/10.3389/FMICB.2018.01459

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zukiewicz-Sobczak W, Wróblewska P, Adamczuk P, Silny W (2014) Probiotic lactic acid bacteria and their potential in the prevention and treatment of allergic diseases. Cent J Immunol 39:113–117. https://doi.org/10.5114/CEJI.2014.42134

    Article  Google Scholar 

  6. Srinivas D, Mital BK, Garg SK (1990) Utilization of sugars by Lactobacillus acidophilus strains. Int J Food Microbiol 10:51–57. https://doi.org/10.1016/0168-1605(90)90007-R

    Article  CAS  PubMed  Google Scholar 

  7. Sun J, Buys N (2015) Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med 47:430–440. https://doi.org/10.3109/07853890.2015.1071872

    Article  CAS  PubMed  Google Scholar 

  8. Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine (Baltimore). https://doi.org/10.1097/MD.0000000000001714

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goldenberg JZ, Ma SSY, Saxton JD et al (2013) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006095.PUB3

    Article  PubMed  Google Scholar 

  10. Grandy G, Medina M, Soria R et al (2010) Probiotics in the treatment of acute rotavirus diarrhea. A randomized, double-blind, controlled trial using two different probiotic preparations in Bolivian children. BMC Infect Dis. https://doi.org/10.1186/1471-2334-10-253

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chitapanarux I, Chitapanarux T, Traisathit P et al (2010) Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. https://doi.org/10.1186/1748-717X-5-31

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bested AC, Logan AC, Selhub EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part II - contemporary contextual research. Gut Pathog. https://doi.org/10.1186/1757-4749-5-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bixquert Jiménez M (2009) Treatment of irritable bowel syndrome with probiotics. An etiopathogenic approach at last? Rev Esp Enferm Dig 101:553–564. https://doi.org/10.4321/S1130-01082009000800006

    Article  PubMed  Google Scholar 

  14. Naghmouchi K, Belguesmia Y, Bendali F et al (2020) Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1688250

    Article  PubMed  Google Scholar 

  15. Li W, Yang L, Nan W et al (2020) Whole-genome sequencing and genomic-based acid tolerance mechanisms of Lactobacillus delbrueckii subsp. bulgaricus LJJ. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10788-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jan G, Tarnaud F, do Carmo FLR et al (2022) The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk. Food Microbiol. https://doi.org/10.1016/j.fm.2022.104042

    Article  PubMed  Google Scholar 

  17. Washburn RL, Sandberg D, Gazdik Stofer MA (2022) Supplementation of a single species probiotic does not affect diversity and composition of the healthy adult gastrointestinal microbiome. Hum Nutr Metab 28:200148. https://doi.org/10.1016/J.HNM.2022.200148

    Article  CAS  Google Scholar 

  18. Kim SW, Suda W, Kim S et al (2013) Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 20:241–253. https://doi.org/10.1093/DNARES/DST006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volokh O, Klimenko N, Berezhnaya Y et al (2019) Human gut microbiome response induced by fermented dairy product intake in healthy volunteers. Nutrients. https://doi.org/10.3390/NU11030547

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krogius-Kurikka L, Lyra A, Malinen E et al (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. https://doi.org/10.1186/1471-230X-9-95

    Article  PubMed  PubMed Central  Google Scholar 

  21. Salonen A, De Vos WM, Palva A (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156:3205–3215. https://doi.org/10.1099/MIC.0.043257-0

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Mao B, Gu J et al (2021) Blautia-a new functional genus with potential probiotic properties? Gut Microbes 13:1–21. https://doi.org/10.1080/19490976.2021.1875796

    Article  CAS  PubMed  Google Scholar 

  23. Khattab MSA, Abd El Tawab AM, Fouad MT (2017) Isolation and characterization of anaerobic bacteria from frozen rumen liquid and its potential characterizations. Int J Dairy Sci 12:47–51. https://doi.org/10.3923/IJDS.2017.47.51

    Article  CAS  Google Scholar 

  24. Kim M, Kim N, Han J (2014) Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1. J Agric Food Chem 62:12377–12383. https://doi.org/10.1021/JF504074N

    Article  CAS  PubMed  Google Scholar 

  25. Laverde Gomez JA, Mukhopadhya I, Duncan SH et al (2019) Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. Environ Microbiol 21:259–271. https://doi.org/10.1111/1462-2920.14454

    Article  CAS  PubMed  Google Scholar 

  26. Maturana JL, Cárdenas JP (2021) Insights on the evolutionary genomics of the Blautia genus: potential new species and genetic content among lineages. Front Microbiol. https://doi.org/10.3389/FMICB.2021.660920

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hamajima H, Matsunaga H, Fujikawa A et al (2016) Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. Springerplus. https://doi.org/10.1186/S40064-016-2950-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Takada T, Kurakawa T, Tsuji H, Nomoto K (2013) Fusicatenibacter saccharivorans gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 63:3691–3696. https://doi.org/10.1099/IJS.0.045823-0

    Article  CAS  PubMed  Google Scholar 

  29. Takeshita K, Mizuno S, Mikami Y et al (2016) A single species of Clostridium subcluster XIVa decreased in ulcerative colitis patients. Inflamm Bowel Dis 22:2802–2810. https://doi.org/10.1097/MIB.0000000000000972

    Article  PubMed  Google Scholar 

  30. Hou Q, Zhao F, Liu W et al (2020) Probiotic-directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes. https://doi.org/10.1080/19490976.2020.1736974

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rapozo DCM, Bernardazzi C, De Souza HSP (2017) Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol 23:2124–2140. https://doi.org/10.3748/WJG.V23.I12.2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sprague R (2017) Fusicatenibacter is associated with kefir drinking. bioRxiv. https://doi.org/10.1101/218313

    Article  Google Scholar 

  33. Yang P, Li Z, DENG TK et al (2021) Effects of probiotics supplementation on placental microbiome in healthy women undergoing spontaneous delivery. https://doi.org/10.21203/RS.3.RS-418396/V1

  34. Engels C, Ruscheweyh HJ, Beerenwinkel N et al (2016) The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. https://doi.org/10.3389/FMICB.2016.00713

    Article  PubMed  PubMed Central  Google Scholar 

  35. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Udayappan S, Manneras-Holm L, Chaplin-Scott A et al (2016) Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes. https://doi.org/10.1038/NPJBIOFILMS.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Almeida D, Machado D, Andrade JC et al (2020) Evolving trends in next-generation probiotics: a 5W1H perspective. Crit Rev Food Sci Nutr 60:1783–1796. https://doi.org/10.1080/10408398.2019.1599812

    Article  PubMed  Google Scholar 

  38. Guhathakurta S (2017) Optimization of growth conditions of “eubacterium Hallii” as a potential probiotics. Wayne State Univ Theses

  39. Tian T, Zhang X, Luo T et al (2021) Effects of short-term dietary fiber intervention on gut microbiota in young healthy people. Diabetes Metab Syndr Obes 14:3507–3516. https://doi.org/10.2147/DMSO.S313385

    Article  PubMed  PubMed Central  Google Scholar 

  40. La Reau AJ, Suen G (2018) The Ruminococci: key symbionts of the gut ecosystem. J Microbiol 56:199–208. https://doi.org/10.1007/S12275-018-8024-4

    Article  PubMed  Google Scholar 

  41. Chng KR, Ghosh TS, Tan YH et al (2020) Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat Ecol Evol 4:1256–1267. https://doi.org/10.1038/S41559-020-1236-0

    Article  PubMed  Google Scholar 

  42. Park W (2018) Gut microbiomes and their metabolites shape human and animal health. J Microbiol 56:151–153. https://doi.org/10.1007/S12275-018-0577-8

    Article  PubMed  Google Scholar 

  43. Li Y, Hintze KJ, Ward RE (2021) Effect of supplemental prebiotics, probiotics and bioactive proteins on the microbiome composition and fecal calprotectin in C57BL6/j mice. Biochimie 185:43–52. https://doi.org/10.1016/J.BIOCHI.2021.02.010

    Article  CAS  PubMed  Google Scholar 

  44. Piquer-Esteban S, Ruiz-Ruiz S, Arnau V et al (2021) Exploring the universal healthy human gut microbiota around the World. Comput Struct Biotechnol J 20:421–433. https://doi.org/10.1016/J.CSBJ.2021.12.035

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gevers D, Kugathasan S, Denson LA et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392. https://doi.org/10.1016/J.CHOM.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen XJ, Rawls JF, Randall T et al (2010) Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1:138–147. https://doi.org/10.4161/GMIC.1.3.12360

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luo M, Liu Q, Xiao L, Xiong L-S (2022) Golden bifid might improve diarrhea-predominant irritable bowel syndrome via microbiota modulation. J Health Popul Nutr. https://doi.org/10.1186/S41043-022-00302-0

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mancabelli L, Milani C, Lugli GA et al (2017) Meta-analysis of the human gut microbiome from urbanized and pre-agricultural populations. Environ Microbiol 19:1379–1390. https://doi.org/10.1111/1462-2920.13692

    Article  PubMed  Google Scholar 

  49. Kulagina EV, Efimov BA, Maximov PY et al (2012) Species composition of Bacteroidales order bacteria in the feces of healthy people of various ages. Biosci Biotechnol Biochem 76:169–171. https://doi.org/10.1271/BBB.110434

    Article  CAS  PubMed  Google Scholar 

  50. Ubeda C, Bucci V, Caballero S et al (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973. https://doi.org/10.1128/IAI.01197-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaakoush NO (2015) Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2015.00084

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mancabelli L, Milani C, Lugli GA et al (2017) Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol. https://doi.org/10.1093/FEMSEC/FIX153

    Article  PubMed  Google Scholar 

  53. Wei X, Tao J, Xiao S et al (2018) Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci Rep. https://doi.org/10.1038/S41598-018-22094-2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Esber N, Mauras A, Delannoy J et al (2020) Three candidate probiotic strains impact gut microbiota and induce anergy in mice with cow’s milk allergy. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01203-20

    Article  PubMed  PubMed Central  Google Scholar 

  55. Duar RM, Lin XB, Zheng J et al (2017) Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 41:S27–S48. https://doi.org/10.1093/FEMSRE/FUX030

    Article  PubMed  Google Scholar 

  56. Mu Q, Tavella VJ, Luo XM (2018) Role of Lactobacillus reuteri in human health and diseases. Front Microbiol. https://doi.org/10.3389/FMICB.2018.00757

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ghosh TS, Arnoux J, O’Toole PW (2020) Metagenomic analysis reveals distinct patterns of gut lactobacillus prevalence, abundance, and geographical variation in health and disease. Gut Microbes 12:1–19. https://doi.org/10.1080/19490976.2020.1822729

    Article  CAS  PubMed  Google Scholar 

  58. Shin JH, Sim M, Lee JY, Shin DM (2016) Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. J Physiol Anthropol. https://doi.org/10.1186/S40101-016-0121-7

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hou YP, He QQ, Ouyang HM et al (2017) Human gut microbiota associated with obesity in chinese children and adolescents. Biomed Res Int. https://doi.org/10.1155/2017/7585989

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pinart M, Dötsch A, Schlicht K et al (2021) Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis. Nutrients. https://doi.org/10.3390/NU14010012

    Article  PubMed  PubMed Central  Google Scholar 

  61. Martínez-Cuesta MC, del Campo R, Garriga-García M et al (2021) Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2021.598093

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brahe LK, Le Chatelier E, Prifti E et al (2015) Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes. https://doi.org/10.1038/NUTD.2015.9

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kaur S, Yawar M, Kumar PA, Suresh K (2014) Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov. Int J Syst Evol Microbiol 64:710–718. https://doi.org/10.1099/IJS.0.056986-0

    Article  CAS  PubMed  Google Scholar 

  64. Hernández-Juárez LE, Camorlinga M, Méndez-Tenorio A et al (2021) Analyses of publicly available Hungatella hathewayi genomes revealed genetic distances indicating they belong to more than one species. Virulence 12:1950–1964. https://doi.org/10.1080/21505594.2021.1950955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Randazzo A, Kornreich A, Lissoir B (2015) A Clostridium hathewayi isolate in blood culture of a patient with an acute appendicitis. Anaerobe 35:44–47. https://doi.org/10.1016/J.ANAEROBE.2015.07.003

    Article  PubMed  Google Scholar 

  66. Aron-Wisnewsky J, Prifti E, Belda E et al (2019) Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68:70–82. https://doi.org/10.1136/GUTJNL-2018-316103

    Article  CAS  PubMed  Google Scholar 

  67. Sbierski-Kind J, Grenkowitz S, Schlickeiser S et al (2022) Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome. https://doi.org/10.1186/S40168-022-01249-4

    Article  PubMed  PubMed Central  Google Scholar 

  68. Baltazar-Díaz TA, González-Hernández LA, Aldana-Ledesma JM et al (2022) Escherichia/ Shigella, SCFAs, and metabolic pathways-the triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from western Mexico. Microorganisms 10:1231. https://doi.org/10.3390/MICROORGANISMS10061231

    Article  PubMed  PubMed Central  Google Scholar 

  69. Castaño-Rodríguez N, Underwood AP, Merif J et al (2018) Gut microbiome analysis identifies potential etiological factors in acute gastroenteritis. Infect Immun. https://doi.org/10.1128/IAI.00060-18

    Article  PubMed  PubMed Central  Google Scholar 

  70. Guo W, Zhang Y, Guo S et al (2021) Tumor microbiome contributes to an aggressive phenotype in the basal-like subtype of pancreatic cancer. Commun Biol. https://doi.org/10.1038/S42003-021-02557-5

    Article  PubMed  PubMed Central  Google Scholar 

  71. Markou P, Apidianakis Y (2014) Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2013.00115

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rubio-Gómez JM, Santiago CM, Udaondo Z et al (2020) Full transcriptomic response of Pseudomonas aeruginosa to an inulin-derived fructooligosaccharide. Front Microbiol. https://doi.org/10.3389/FMICB.2020.00202

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Ministry of Science and Higher Education of the Russian Federation in the framework of the national project “Science” (project FZGW-2020–0001, unique number of the register of State tasks 075001X39782002).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.S., E.P., and V.P.; methodology: M.S. and E.P.; software: M.G.; validation: M.G. and Yu.S.; formal analysis: M.G., I.B., and Yu.S.; investigation: I.B. and Yu.S.; resources: M.S., P.Ch., and V.P.; data curation: M.G. and Yu.S.; writing—original draft preparation: M.G., Yu.S., I.B., and P.Ch.; writing—review and editing: M.S. and V.P.; visualization: M.G. and I.B.; supervision: M.S. and V.P.; project administration: V.P.; funding acquisition: V.P. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mikhail Syromyatnikov.

Ethics declarations

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Ethics Board of Voronezh State University (Protocol N42-03, March 7, 2022).

Consent to Participate

Informed consent was obtained from all subjects involved in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryaznova, M., Smirnova, Y., Burakova, I. et al. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10111-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10111-4

Keywords

Navigation