Skip to main content

Advertisement

Log in

Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All 16S rRNA Illumina amplicon sequencing data presented in this study are openly available in the Short Read Archive of the National Centre for Biotechnology Information (NCBI) with accession number PRJNA800410.

References

  1. FAO (2019) FAO aquaculture newsletter. No. 60 (August). Rome

  2. Watts JE, Schreier HJ, Lanska L et al (2017) The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs 15(6):158. https://doi.org/10.3390/md15060158

    Article  CAS  Google Scholar 

  3. Foysal MJ, Momtaz F, Robiul Kawser AQM et al (2019) Microbiome patterns reveal the transmission of pathogenic bacteria in hilsa fish (Tenualosa ilisha) marketed for human consumption in Bangladesh. J Appl Microbiol 126:1879–1890. https://doi.org/10.1111/jam.14257

    Article  CAS  Google Scholar 

  4. Ng C, Gin KYH (2019) Monitoring antimicrobial resistance dissemination in aquatic systems. Water 11:1–7. https://doi.org/10.3390/w11010071

    Article  Google Scholar 

  5. Van Hai N (2015) The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture 446:88–96. https://doi.org/10.1016/j.aquaculture.2015.03.014

    Article  CAS  Google Scholar 

  6. Choudhury TG, Kamilya D (2019) Paraprobiotics: an aquaculture perspective. Rev Aquac 11:1258–1270. https://doi.org/10.1111/raq.12290

    Article  Google Scholar 

  7. Rimoldi S, Torrecillas S, Montero D et al (2020) Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass (Dicentrarchus Labrax) fed low fishmeal and fish oil based diet. PLoS ONE 15:e0231494. https://doi.org/10.1371/journal.pone.0231494

    Article  CAS  Google Scholar 

  8. El-Saadony MT, Alagawany M, Patra AK et al (2021) The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol 117:36–52. https://doi.org/10.1016/j.fsi.2021.07.007

    Article  Google Scholar 

  9. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, a joint FAO/WHO consultation Cordoba, Argentina, 1–4 October

  10. Hoseinifar SH, Sun YZ, Wang A, Zhou Z (2018) Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9:1–18. https://doi.org/10.3389/fmicb.2018.02429

    Article  Google Scholar 

  11. Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77:99–113. https://doi.org/10.1007/s13199-018-0580-1

    Article  Google Scholar 

  12. Tarnecki AM, Wafapoor M, Phillips RN, Rhody NR (2019) Benefits of a Bacillus probiotic to larval fish survival and transport stress resistance. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-39316-w

    Article  CAS  Google Scholar 

  13. Foysal MJ, Alam M, Kawser AQMR et al (2020) Meta-omics technologies reveals beneficiary effects of Lactobacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 520:734974. https://doi.org/10.1016/j.aquaculture.2020.734974

    Article  CAS  Google Scholar 

  14. Van Doan H, Hoseinifar SH, Ringø E et al (2020) Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fish Sci Aquacult 28:16–42. https://doi.org/10.1080/23308249.2019.1643288

    Article  Google Scholar 

  15. Gobi N, Vaseeharan B, Chen JC et al (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508. https://doi.org/10.1016/j.fsi.2017.12.066

    Article  CAS  Google Scholar 

  16. Ramesh D, Souissi S (2018) Effects of potential probiotic Bacillus subtilis KADR1 and its subcellular components on immune responses and disease resistance in Labeo rohita. Aquac Res 49:367–377. https://doi.org/10.1111/are.13467

    Article  CAS  Google Scholar 

  17. Yi Y, Zhang Z, Zhao F et al (2018) Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish shellfish immunol 78:322–330. https://doi.org/10.1016/j.fsi.2018.04.055

    Article  CAS  Google Scholar 

  18. Kuebutornye FK, Abarike ED, Lu Y (2019) A review on the application of Bacillus as probiotics in aquaculture. Fish shellfish immunol 87:820–828. https://doi.org/10.1016/j.fsi.2019.02.010

    Article  CAS  Google Scholar 

  19. Kuebutornye FK, Abarike ED, Lu Y et al (2020) Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiol Biochem 46:819–841. https://doi.org/10.1007/s10695-019-00754-y

    Article  CAS  Google Scholar 

  20. Wu Z, Qi X, Qu S, Ling F, Wang G (2021) Dietary supplementation of Bacillus velezensis B8 enhances immune response and resistance against Aeromonas veronii in grass carp. Fish Shellfish Immunol 115:14–21. https://doi.org/10.1016/j.fsi.2021.05.012

    Article  CAS  Google Scholar 

  21. Goda AM, Omar EA, Srour TM et al (2018) Effect of diets supplemented with feed additives on growth, feed utilization, survival, body composition and intestinal bacterial load of early weaning European seabass, Dicentrarchus labrax post-larvae. Aquac Int 26:169–183. https://doi.org/10.1007/s10499-017-0200-8

    Article  CAS  Google Scholar 

  22. Zokaeifar H, Babaei N, Saad CR et al (2014) Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei. Fish shellfish Immunol 36:68–74. https://doi.org/10.1016/j.fsi.2013.10.007

  23. Eissa N, Wang HP, Yao H, Abou-ElGheit E (2018) Mixed Bacillus species enhance the innate immune response and stress tolerance in yellow perch subjected to hypoxia and air-exposure stress. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-25269-z

    Article  CAS  Google Scholar 

  24. Olmos J, Acosta M, Mendoza G, Pitones V (2020) Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol 202:427–435. https://doi.org/10.1007/s00203-019-01757-2

    Article  CAS  Google Scholar 

  25. Yánez-Mendizábal V, Viñas I, Usall J et al (2012) Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J Appl Microbiol 112:954–965. https://doi.org/10.1111/j.1365-2672.2012.05258.x

    Article  CAS  Google Scholar 

  26. Diwan AD, Harke SN, Panche AN (2021) Aquaculture industry prospective from gut microbiome of fish and shellfish: an overview. J Anim Physiol Anim Nutr 00:1–29. https://doi.org/10.1111/jpn.13619

    Article  CAS  Google Scholar 

  27. Giatsis C, Sipkema D, Ramiro-Garcia J, Bacanu GM et al (2016) Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci Rep 6:1–11. https://doi.org/10.1038/srep33965

    Article  CAS  Google Scholar 

  28. Jiang Y, Wang Y, Zhang Z et al (2019) Responses of microbial community structure in turbot (Scophthalmus maximus) larval intestine to the regulation of probiotic introduced through live feed. PLoS ONE 14(5):e0216590. https://doi.org/10.1371/journal.pone.0216590

    Article  Google Scholar 

  29. Maas RM, Deng Y, Dersjant-Li Y et al (2021) Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci Rep 11:1–16. https://doi.org/10.1038/s41598-021-87408-3

    Article  CAS  Google Scholar 

  30. Vandeputte M, Gagnaire PA, Allal F (2019) The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 50:195–206. https://doi.org/10.1111/age.12779

    Article  CAS  Google Scholar 

  31. FAO (2018) Fisheries statistics and information. In: FAO Fisheries and Aquaculture Department. FAO, Rome: http://www.fao.org/fishery/statistics/en

  32. Nikouli E, Meziti A, Antonopoulou E et al (2018) Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax). Microorganisms 6:92. https://doi.org/10.3390/microorganisms6030092

    Article  CAS  Google Scholar 

  33. Kokou F, Sasson G, Friedman J et al (2019) Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat Microbiol 4:2456–2465. https://doi.org/10.1038/s41564-019-0560-0

    Article  CAS  Google Scholar 

  34. Kokou F, Sasson G, Mizrahi I, Cnaani A (2020) Antibiotic effect and microbiome persistence vary along the European seabass gut. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-66622-5

    Article  CAS  Google Scholar 

  35. Serra CR, Oliva-Teles A, Enes P, Tavares F (2021) Gut microbiota dynamics in carnivorous European seabass (Dicentrarchus labrax) fed plant-based diets. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-020-80138-y

    Article  CAS  Google Scholar 

  36. Busti S, Rossi B, Volpe E et al (2020) Effects of dietary organic acids and nature identical compounds on growth, immune parameters and gut microbiota of European sea bass. Sci Rep 10(1):21321. https://doi.org/10.1038/s41598-020-78441-9

    Article  CAS  Google Scholar 

  37. Pérez-Pascual D, Estellé J, Dutto G et al (2020) Growth performance and adaptability of European sea bass (Dicentrarchus labrax) gut microbiota to alternative diets free of fish products. Microorganisms 8(9):1346. https://doi.org/10.3390/microorganisms8091346

    Article  CAS  Google Scholar 

  38. Farhat-Khemakhem A, Blibech M, Boukhris I et al (2018) Assessment of the potential of the multi-enzyme producer Bacillus amyloliquefaciens US573 as alternative feed additive. J Sci Food Agric 98:1208–1215. https://doi.org/10.1002/jsfa.8574

    Article  CAS  Google Scholar 

  39. Guo X, Li D, Lu W et al (2006) Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek 90:139–146. https://doi.org/10.1007/s10482-006-9067-9

    Article  CAS  Google Scholar 

  40. Posada-Uribe LF, Romero-Tabarez M, Villegas-Escobar V (2015) Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess Biosyst Eng 38:1879–1888. https://doi.org/10.1007/s00449-015-1428-1

    Article  CAS  Google Scholar 

  41. Abdallah MB, Karray F, Mhiri N et al (2016) Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid. Extremophiles 20:125–138. https://doi.org/10.1007/s00792-015-0805-7

    Article  CAS  Google Scholar 

  42. Marathe N, Shetty S, Lanjekar V et al (2012) Changes in human gut flora with age: an Indian familial study. BMC Microbiol 12:1–10. https://doi.org/10.1186/1471-2180-12-222

    Article  Google Scholar 

  43. Takahashi S, Tomita J, Nishioka K et al (2014) Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9:e105592. https://doi.org/10.1371/journal.pone.0105592

    Article  CAS  Google Scholar 

  44. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  Google Scholar 

  45. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  Google Scholar 

  46. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  Google Scholar 

  47. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, p 96

    Google Scholar 

  48. Simpson EH (1949) Measurement of diversity. Nature 163:688–688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  49. Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578. https://doi.org/10.1111/j.1574-6976.2008.00111.x

    Article  CAS  Google Scholar 

  50. Langfelder P, Horvath S (2012) Fast R functions for robust correlations and hierarchical clustering. J Stat Softw 46(11):i11. https://doi.org/10.18637/jss.v046.i11

  51. Lahti L, Shetty S (2012) Microbiome-GitHub. http://microbiome.github.com/microbiome

  52. Serra CR, Earl AM, Barbosa TM et al (2014) Sporulation during growth in a gut isolate of Bacillus subtilis. J Bacteriol 196:4184–4196. https://doi.org/10.1128/JB.01993-14

    Article  CAS  Google Scholar 

  53. Givens CE, Ransom B, Bano N, Hollibaugh JT (2015) Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar Ecol Prog Ser 518:209–223. https://doi.org/10.3354/meps11034

    Article  Google Scholar 

  54. Tarnecki AM, Burgos FA, Ray CL, Arias CR (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 123:2–17. https://doi.org/10.1111/jam.13415

    Article  CAS  Google Scholar 

  55. Gatesoupe FJ, Huelvan C, Le Bayon N et al (2016) The highly variable microbiota associated to intestinal mucosa correlates with growth and hypoxia resistance of sea bass, Dicentrarchus labrax, submitted to different nutritional histories. BMC Microbiol 16(1):266. https://doi.org/10.1186/s12866-016-0885-2

    Article  CAS  Google Scholar 

  56. Ushakova NA, Pravdin VG, Kravtsova LZ et al (2021) Complex bioactive supplements for aquaculture-evolutionary development of probiotic concepts. Probiotics Antimicrob Proteins 13(6):1696–1708. https://doi.org/10.1007/s12602-021-09835-y

    Article  CAS  Google Scholar 

  57. Soto JO (2017) Bacillus probiotic enzymes: external auxiliary apparatus to avoid digestive deficiencies, water pollution, diseases, and economic problems in marine cultivated animals. Adv Food Nutr Res 80:15–35. https://doi.org/10.1016/bs.afnr.2016.11.001

    Article  CAS  Google Scholar 

  58. Soto JO (2021) Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World J Microbiol Biotechnol 37:1–7. https://doi.org/10.1007/s11274-020-02987-z

    Article  Google Scholar 

  59. Hasan MT, Jang WJ, Kim H et al (2018) Synergistic effects of dietary Bacillus sp. SJ-10 plus β-glucooligosaccharides as a synbiotic on growth performance, innate immunity and streptococcosis resistance in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 82:544–553. https://doi.org/10.1016/j.fsi.2018.09.002

    Article  CAS  Google Scholar 

  60. Jang WJ, Hasan MT, Lee BJ et al (2020) Effect of dietary differences on changes of intestinal microbiota and immune-related gene expression in juvenile olive flounder (Paralichthys olivaceus). Aquaculture 527:735442. https://doi.org/10.1016/j.aquaculture.2020.735442

    Article  CAS  Google Scholar 

  61. González-Félix ML, Gatlin DM III, Urquidez-Bejarano P et al (2018) Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquaculture 491:239–251. https://doi.org/10.1016/j.aquaculture.2018.03.031

    Article  CAS  Google Scholar 

  62. Reda R, Selim K (2015) Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquac Int 23:203–217. https://doi.org/10.1007/s10499-014-9809-z

    Article  CAS  Google Scholar 

  63. Ramos MA, Batista S, Pires MA et al (2017) Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 11:1259–1269. https://doi.org/10.1017/S1751731116002792

    Article  CAS  Google Scholar 

  64. Messina JP, Brady OJ, Golding N et al (2019) The current and future global distribution and population at risk of dengue. Nat Microbiol 4:1508–1515. https://doi.org/10.1038/s41564-019-0476-8

    Article  CAS  Google Scholar 

  65. Islam SM, Rohani MF, Shahjahan M (2021) Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquac Rep 21:100800. https://doi.org/10.1016/j.aqrep.2021.100800

    Article  Google Scholar 

  66. Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25:195–231. https://doi.org/10.1007/BF00171889

    Article  CAS  Google Scholar 

  67. Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945. https://doi.org/10.1100/tsw.2006.181

    Article  CAS  Google Scholar 

  68. Suo Y, Li E, Li T et al (2017) Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 63:87–96. https://doi.org/10.1016/j.fsi.2017.02.008

    Article  CAS  Google Scholar 

  69. Yang X, Xu M, Huang G et al (2019) Effect of dietary L-tryptophan on the survival, immune response and gut microbiota of the Chinese mitten crab. Eriocheir sinensis Fish Shellfish Immunol 84:1007–1017. https://doi.org/10.1016/j.fsi.2018.10.076

    Article  CAS  Google Scholar 

  70. Liu X, Cao Y, Ouyang S, Wu X (2020) Comparative analysis of gut microbiota diversity in endangered, economical, and common freshwater mussels using 16S rRNA gene sequencing. Ecol Evol 10:12015–12023. https://doi.org/10.1002/ece3.6796

    Article  Google Scholar 

  71. Niu KM, Khosravi S, Kothari D et al (2019) Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 93:258–268. https://doi.org/10.1016/j.fsi.2019.07.056

    Article  CAS  Google Scholar 

  72. Zhou W, Liu B, Li Y et al (2021) Dietary supplementation with Sporosarcina aquimarina MS4 enhances juvenile sea cucumber (Apostichopus japonicus) growth, immunity and disease resistance against Vibrio splendidus infection at low temperature. Aquac Nutr 27:918–926. https://doi.org/10.1111/anu.13236

    Article  CAS  Google Scholar 

  73. Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 5:1–26. https://doi.org/10.1186/s40064-016-1869-2

    Article  CAS  Google Scholar 

  74. Zhang X, Fu L, Deng B et al (2013) Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World J Microbiol Biotechnol 29(9):1645–1653. https://doi.org/10.1007/s11274-013-1327-z

    Article  Google Scholar 

  75. Liu H, Li J, Guo X et al (2018) Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp. Microb Biotechnol 11:551–565. https://doi.org/10.1111/1751-7915.13261

    Article  CAS  Google Scholar 

  76. Gutiérrez-Falcón AI, Ramos-Nuez AM, de Los MY et al (2021) Probiotic properties of Alcaligenes faecalis isolated from Argyrosomus regius in experimental peritonitis (rat model). Probiotics Antimicrob Proteins 13(5):1326–1337. https://doi.org/10.1007/s12602-021-09767-7

    Article  CAS  Google Scholar 

  77. Annamalai N, Kumar A, Saravanakumar A et al (2011) Characterization of protease from Alcaligens faecalis and its antibacterial activity on fish pathogens. J Environ Biol 32:781–786

    CAS  Google Scholar 

  78. Tsertou MI, Smyrli M, Kokkari C et al (2018) The aetiology of systemic granulomatosis in meagre (Argyrosomus regius): the “Nocardia” hypothesis. Aquac Rep 12:5–11. https://doi.org/10.1016/j.aqrep.2018.08.002

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Mohammed Y. Refai, head of the Department of Biological Sciences at the College of Science, University of Jeddah, for his continuous support.

Funding

This work was supported by the Distinguished Scientific Researches project N° UJ-20–030-DR University of Jeddah.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hamadi Guerbej, Fatma Karray, and Hichem Chouayekh. Investigation: Insaf Boubaker, Manel Ben Abdallah, Ameny Farhat-Khemakhem, and Hichem Chouayekh. Data analysis: Najla Mhiri, Ameny Farhat-Khemakhem, and Fatma Karray. Writing original draft: Ameny Farhat-Khemakhem. Writing—reviewing and editing: Fatma Karray, Othman A. Alghamdi, Hamadi Guerbej, and Hichem Chouayekh.

Corresponding author

Correspondence to Hichem Chouayekh.

Ethics declarations

Ethics Approval

All animal experiments described in the present study were conducted at the National Institute of Science and Technology of the Sea (INSTM Monastir, Tunisia) in accordance with the recommendations of Directive 2010/63/EU on the protection of animals used for scientific purposes.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouayekh, H., Farhat-Khemakhem, A., Karray, F. et al. Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass. Probiotics & Antimicro. Prot. 15, 30–43 (2023). https://doi.org/10.1007/s12602-022-09974-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09974-w

Keywords

Navigation