Skip to main content

Advertisement

Log in

Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: a Review

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Tilapia production has significantly increased over the past few years due to the adoption of semi-intensive and intensive aquaculture technologies. However, these farming systems have subjected the fish to stressful conditions that suppress their immunity, hence exposing them to various pathogens. The application of antibiotics and therapeutics to enhance disease resistance, survival, and growth performance in aquaculture has been recently banned due to the emergence of antibiotic-resistant bacteria that pose a serious threat to the environment and consumers of aquatic organisms. Hence, the need for an alternative approach based on sustainable farming practices is warranted. Probiotic, prebiotic, and synbiotic use in tilapia production is considered a viable, safe, and environmentally friendly alternative that enhances growth performance, feed utilization, immunity, disease resistance, and fish survival against pathogens and environmental stress. Their inclusion in fish diets and or rearing water improves the general wellbeing of fish. Hence, this review aims at presenting research findings from the use of probiotics, prebiotics, and synbiotics and their effect on survival, growth, growth performance, gut morphology, microbial abundance, enzyme production, immunity, and disease resistance in tilapia aquaculture, while highlighting several hematological, blood biochemical parameters, and omics techniques that have been used to assess fish health. Furthermore, gaps in existing knowledge are addressed and future research studies have been recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdel-Latif HM, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M (2020) The nature and consequences of co-infections in tilapia: a review. J Fish Dis 43(6):651–664. https://doi.org/10.1111/jfd.13164

  2. FAO (2020) The state of world fisheries and aquaculture. 200–200. [Online]. Available: http://www.fao.org/3/i5555e/i5555e.pdf

  3. Naylor RL, Hardy RW, Buschmann AH, Bush SR et al (2021) A 20-year retrospective review of global aquaculture. Nature 591(7851):551–563. https://doi.org/10.1038/s41586-021-03308-6

  4. FAO (2018) Tilapia trade global and regional trends. [Online]. Available: http://www.fao.org/3/i5555e/i5555e.pdf

  5. Ansah, YB, Frimpong EA, Hallerman EM (2014) Genetically-improved tilapia strains in Africa: potential benefits and negative impacts. Sustain (Switzerland) 6(6):3697–3721. https://doi.org/10.3390/su6063697

  6. Jansen MD, Dong HT, Mohan CV (2019) Tilapia lake virus: a threat to the global tilapia industry? Rev Aquac 11(3):725–739. https://doi.org/10.1111/raq.12254

  7. Kumar G, Engle CR (2016) Technological advances that led to growth of shrimp, salmon, and tilapia farming. Rev Fish Sci Aquac 24(2):136–152. https://doi.org/10.1080/23308249.2015.1112357

  8. Dawood MAO (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev Aquac 13(1):642–663. https://doi.org/10.1111/raq.12492

    Article  Google Scholar 

  9. Kuebutornye FKA, Abarike ED, Sakyi ME, Lu Y et al (2020) Modulation of nutrient utilization, growth, and immunity of Nile tilapia, Oreochromis niloticus: the role of probiotics. Aquac Int 28(1):277–291. https://doi.org/10.1007/s10499-019-00463-6

  10. Dawood MAO, Koshio S (2016) Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454:243–251. https://doi.org/10.1016/j.aquaculture.2015.12.033

  11. Cabello FC, Godfrey HP (2016) Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environ Microbiol 18(2):311–313. https://doi.org/10.1111/1462-2920.13247

  12. Mugwanya M, Dawood MAO, Kimera F, Sewilam H (2021) Biofloc systems for sustainable production of economically important aquatic species: a review. Sustainability 13(13):7255. https://doi.org/10.3390/su13137255

    Article  Google Scholar 

  13. Henriksson PJG, Rico A, Troell M, Klinger DH et al (2018) Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain Sci 13(4):1105–1120. https://doi.org/10.1007/s11625-017-0511-8

  14. Hill C, Guarner F, Reid G et al (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  15. Merrifield DL, Dimitroglou A, Foey A, Davies SJ et al (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302(1–2):1–18. https://doi.org/10.1016/j.aquaculture.2010.02.007

  16. Ringø E, Olsen RE, Gifstad T, Dalmo RA et al (2010) Prebiotics in aquaculture: a review. Aquacult Nutr 16(2):117–136. https://doi.org/10.1111/j.1365-2095.2009.00731.x

    Article  CAS  Google Scholar 

  17. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME (2020) The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17(11):687–701. https://doi.org/10.1038/s41575-020-0344-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cavalcante RB, Telli GS, Tachibana L, Dias DdC et al (2020) Probiotics, prebiotics and synbiotics for Nile tilapia: growth performance and protection against Aeromonas hydrophila infection. Aquacult Rep 17:100343–100343. https://doi.org/10.1016/j.aqrep.2020.100343

  19. Hai NV (2015) Research findings from the use of probiotics in tilapia aquaculture: a review. Fish Shellfish Immunol 45(2):592–597. https://doi.org/10.1016/j.fsi.2015.05.026

  20. Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of tilapia Nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25(1–2):128–136. https://doi.org/10.1016/j.fsi.2008.03.013

  21. Del'Duca A, Cesar DE, Diniz CG, Abreu PC (2013) Evaluation of the presence and efficiency of potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ hybridization technique. Aquaculture 388–391(1):115–121. https://doi.org/10.1016/j.aquaculture.2013.01.019

  22. Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review: Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11. https://doi.org/10.1016/j.aquaculture.2013.08.026

  23. Abd El-Rhman AM, Khattab YAE, Shalaby AME (2009) Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 27(2):175–180. https://doi.org/10.1016/j.fsi.2009.03.020

  24. Chu TW, Chen CN, Pan CY (2020) Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquacult Rep 17:100397–100397. https://doi.org/10.1016/j.aqrep.2020.100397

  25. Dawood MAO, Eweedah NM, Moustafa Moustafa E, Shahin MG (2019) Effects of feeding regimen of dietary Aspergillus oryzae on the growth performance, intestinal morphometry and blood profile of Nile tilapia (Oreochromis niloticus). Aquacult Nutr 25(5):1063–1072. https://doi.org/10.1111/anu.12923

  26. Tan HY, Chen SW, Hu SY (2019) Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 92:265–275. https://doi.org/10.1016/j.fsi.2019.06.027

    Article  CAS  PubMed  Google Scholar 

  27. Wang YB, Tian ZQ, Yao JT, Li WF (2008) Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277(3–4):203–207. https://doi.org/10.1016/j.aquaculture.2008.03.007

  28. Yasin R, Samiullah K, Fazal RM, Hussain S et al (2020) Combined effect of probiotics on prolonging the shelf life of GIFT tilapia fillets. Aquacult Res 51(12):5151–5162. https://doi.org/10.1111/are.14853

    Article  CAS  Google Scholar 

  29. Eissa N, AbouElGheit E (2014) Dietary supplementation impacts of potential non-pathogenic isolates on growth performance, hematological parameters and disease resistance in Nile tilapia (Oreochromis niloticus). J Vet Adv 4(10):712–712. https://doi.org/10.5455/jva.20141025045451

  30. El-Haroun ER, Goda AMAS, Kabir Chowdhury MA (2006) Effect of dietary probiotic Biogen® supplementation as a growth promoter on growth performance and feed utilization of Nile tilapia Oreochromis niloticus (L.). Aquacult Res 37(14):1473–1480. https://doi.org/10.1111/j.1365-2109.2006.01584.x

  31. Ridha MT, Azad IS (2016) Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquacult Res 47(9):2757–2767. https://doi.org/10.1111/are.12726

  32. Merrifield DL, Bradley G, Baker RTM, Davies SJ (2010) Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquacult Nutr 16(5):496–503. https://doi.org/10.1111/j.1365-2095.2009.00688.x

  33. Melo-Bolívar JF, Ruiz Pardo RY, MEHume, Villamil Díaz LM (2021) Multistrain probiotics use in main commercially cultured freshwater fish: a systematic review of evidence. Rev Aquac 1–23. https://doi.org/10.1111/raq.12543

  34. Adel M, Lazado CC, Safari R, Yeganeh S et al (2017) Aqualase®, a yeast-based in-feed probiotic, modulates intestinal microbiota, immunity and growth of rainbow trout Oncorhynchus mykiss. Aquacult Res 48(4):1815–1826. https://doi.org/10.1111/are.13019

  35. Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(2):99–113. https://doi.org/10.1007/s13199-018-0580-1

  36. Holzapfel WH, Schillinger U (2002) Introduction to pre- and probiotics. Food Res Int 35(2–3):109–116. https://doi.org/10.1016/S0963-9969(01)00171-5

  37. Foysal MJ, Alam M, Kawser AQMR, Hasan F et al (2020) Meta-omics technologies reveals beneficiary effects of Lactiplantibacillus plantarum as dietary supplements on gut microbiota, immune response and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture 520:734974–734974. https://doi.org/10.1016/j.aquaculture.2020.734974

  38. Opiyo MA, Jumbe J, Ngugi CC, Charo-Karisa H (2019) Dietary administration of probiotics modulates non-specific immunity and gut microbiota of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Int J Vet Sci Med 7(1):1–9. https://doi.org/10.1080/23144599.2019.1624299

  39. Garred P, Brygge K, CHSorensen, Madsen HO et al (1993) Mannan-binding protein - levels in plasma and upper-airways and frequency of genotypes in children with recurrence of otitis media. Clin Exp Immunol 94(1):99–104. https://doi.org/10.1111/j.1365-2249.1993.tb05984.x

  40. Mahdhi A (2012) Probiotic properties of Brevibacillus brevis and its influence on sea bass (Dicentrarchus labrax) larval rearing. African J Microbiol Res 6(35). https://doi.org/10.5897/ajmr12.1201

  41. Sorroza L, Padilla D, Acosta F, Román L et al (2012) Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet Microbiol 155(2–4):369–373. https://doi.org/10.1016/j.vetmic.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  42. Vickers NJ (2017) Animal communication: when I'm calling you, will you answer too? Curr Biol 27(14):R713-R715. https://doi.org/10.1016/j.cub.2017.05.064

  43. Lazado CC, Caipang CMA, Estante EG (2015) Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45(1):2–12. https://doi.org/10.1016/j.fsi.2015.02.023

  44. Abdel-Ghany HM, Salem MES, Abouelkhier SS, Helal AM (2020) Effect of a cocktail of enzymes and probiotics on the growth and the bacterial enumeration in gut and effluents of red tilapia (Oreochromis niloticus × O. mossambicus). Egypt J Aquat Res 46(3):289–294. https://doi.org/10.1016/j.ejar.2020.07.001

  45. Wang M, Yi M, Lu M, Gao F et al (2020) Effects of probiotics Bacillus cereus NY5 and Alcaligenes faecalis Y311 used as water additives on the microbiota and immune enzyme activities in three mucosal tissues in Nile tilapia Oreochromis niloticus reared in outdoor tanks. Aquacult Rep 17:100309–100309. https://doi.org/10.1016/j.aninu.2019.07.002

  46. Harikrishnan R, Balasundaram C, Heo MS (2010) Effect of probiotics enriched diet on Paralichthys olivaceus infected with lymphocystis disease virus (LCDV). Fish Shellfish Immunol 29(5):868–874. https://doi.org/10.1016/j.fsi.2010.07.031

  47. Li J, Tan B, Mai K (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291(1–2):35–40. https://doi.org/10.1016/j.aquaculture.2009.03.005

  48. Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R et al (2016) Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36(4):228–241. https://doi.org/10.1080/01652176.2016.1172132

  49. Tinh NTN, Dierckens K, Sorgeloos P, Bossier P (2008) A review of the functionality of probiotics in the larviculture food chain. Mar Biotechnol 10(1):1–12. https://doi.org/10.1007/s10126-007-9054-9

  50. Villamil L, Reyes C, Martínez-Silva MA (2014) In vivo and in vitro assessment of Lactobacillus acidophilus as probiotic for tilapia (Oreochromis niloticus, Perciformes: Cichlidae) culture improvement. Aquacult Res 45(7):1116–1125. https://doi.org/10.1111/are.12051

  51. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671. https://doi.org/10.1128/mmbr.64.4.655-671.2000

  52. Gram L, Melchiorsen J, Spanggaard B, Huber I et al (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl Environ Microbiol 65:969–973. https://doi.org/10.1128/AEM.65.3.969-973.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Steinfeld B, Scott J, Vilander G, Marx L et al (2015) The role of lean process improvement in implementation of evidence-based practices in behavioral health care. J Behav Heal Serv Res 42(4):504–518. https://doi.org/10.1007/s11414-013-9386-3

  54. Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS et al (2012) Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 33(4):683–689. https://doi.org/10.1016/j.fsi.2012.05.027

  55. Arellano-Carbajal F, Olmos-Soto J (2002) Thermostable α-1,4- and α-1,6-glucosidase enzymes from Bacillus sp. isolated from a marine environment. World J Microbiol Biotechnol 18(8):791–795. https://doi.org/10.1023/A:1020433210432

  56. Eshaghzadeh H, Hoseinifar SH, Vahabzadeh H, Ringø E (2015) The effects of dietary inulin on growth performances, survival and digestive enzyme activities of common carp (Cyprinus carpio) fry. Aquacult Nutr 21(2):242–247. https://doi.org/10.1111/anu.12155

  57. Guo Q, Piyasena P, Mittal GS, Si W et al (2006) Efficacy of radio frequency cooking in the reduction of Escherichia coli and shelf stability of ground beef. Food Microbiol 23(2):112–118. https://doi.org/10.1016/j.fm.2005.02.004

  58. Taoka Y, Maeda H, Jo J, Sakata T (2007) Influence of commercial probiotics on the digestive enzyme activities of Tilapia, Oreochromis niloticus. Aquac Sci 55(2):183–189. https://doi.org/10.11233/aquaculturesci1953.55.183

  59. Gobi N, Vaseeharan B, Chen JC, Rekha R et al (2018) Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508. https://doi.org/10.1016/j.fsi.2017.12.066

  60. Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens. Fish Shellfish Immunol 44(2):496–503. https://doi.org/10.1016/j.fsi.2015.03.004

  61. Srisapoome P, Areechon N (2017) Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): laboratory and on-farm trials. Fish Shellfish Immunol 67:199–210. https://doi.org/10.1016/j.fsi.2017.06.018

  62. Xia Y, Wang M, Gao F, Lu M et al (2020) Effects of dietary probiotic supplementation on the growth, gut health and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). Anim Nutr 6(1):69–79. https://doi.org/10.1016/j.aninu.2019.07.002

  63. Sookchaiyaporn N, Srisapoome P, Unajak S, Areechon N (2020) Efficacy of Bacillus spp. isolated from Nile tilapia Oreochromis niloticus Linn. on its growth and immunity, and control of pathogenic bacteria. Fish Sci 86:353–365. https://doi.org/10.1007/s12562-019-01394-0

  64. Garcia-Marengoni N, Menezes-Albuquerque D (2015) Cuantificación de las bacterias intestinales, costo de operación y desempeño de alevines de tilapia del nilo sometido a probióticos. Lat Am J Aquat Res 43(2):367–373. https://doi.org/10.3856/vol43-issue2-fulltext-13

  65. Elsabagh M, Mohamed R, Moustafa EM, Hamza A et al (2018) Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquacult Nutr 24(6):1613–1622. https://doi.org/10.1111/anu.12797

  66. Galagarza OA, Smith SA, Drahos DJ, Eifert JD et al (2018) Modulation of innate immunity in Nile tilapia (Oreochromis niloticus) by dietary supplementation of Bacillus subtilis endospores. Fish Shellfish Immunol 83:171–179. https://doi.org/10.1016/j.fsi.2018.08.062

  67. Xia Y, Lu M, Chen G, Cao J et al (2018) Effects of dietary Lacticaseibacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 76:368–379. https://doi.org/10.1016/j.fsi.2018.03.020

  68. El-Moghazy MSMGM, El-sayed AE-kIM, Iraqi MM, Soltan MA (2015) Role of probiotics in improving growth performance, immunity and controlling Aeromonas hydrophila in the Nile tilapia Oreochromis niloticus. Egypt J Aquat Biol Fish 19(3):55–70. [Online]. Available:https://ejabf.journals.ekb.eg/article_2271_2767879dfa998ddb64f0737a8f129d06.pdf

  69. Makled SO, Hamdan AM, El-Sayed AFM, Hafez EE (2017) Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish Shellfish Immunol 61:194–200. https://doi.org/10.1016/j.fsi.2017.01.001

  70. Ferguson RMW, Merrifield DL, Harper, Rawling MD et al (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J Appl Microbiol 109(3):851–862. https://doi.org/10.1111/j.1365-2672.2010.04713.x

  71. Dowidar MF, Abd ElAzeem S, Khater AM, Awad Somayah M et al (2018) Improvement of growth performance, immunity and disease resistance in Nile tilapia, Oreochromis niloticus, by using dietary probiotics supplementation. J Anim Sci Vet Med 3(2):35–46. https://doi.org/10.31248/jasvm2018.076

  72. Zahran E, Awadin W, Risha E, Khaled AA et al (2019) Dietary supplementation of Chlorella vulgaris ameliorates chronic sodium arsenite toxicity in Nile tilapia Oreochromis niloticus as revealed by histopathological, biochemical and immune gene expression analysis. Fish Sci 85(1):199–215. https://doi.org/10.1007/s12562-018-1274-6

  73. Dawood MAO, Moustafa EM, Gewaily MS, Abdo SE et al (2020) Ameliorative effects of Lactiplantibacillus plantarum L-137 on Nile tilapia (Oreochromis niloticus) exposed to deltamethrin toxicity in rearing water. Aquat Toxicol 219:105377–105377. https://doi.org/10.1016/j.aquatox.2019.105377

    Article  CAS  PubMed  Google Scholar 

  74. Dawood MAO, Eweedah NM, Moustafa EM, Farahat EM (2020) Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture 520:734669–734669. https://doi.org/10.1016/j.aquaculture.2019.734669

  75. Telli GS, Ranzani-Paiva MJT, Dias DdC, Sussel FR et al (2014) Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish Shellfish Immunol 39(2):305–311. https://doi.org/10.1016/j.fsi.2014.05.025

  76. Chen SW, Liu CH, Hu SY (2019) Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 84:695–703. https://doi.org/10.1016/j.fsi.2018.10.059

  77. El-Ezabi M, El-Serafy S, Essa M, Daboor S et al (2011) The viability of probiotics as a factor influencing the immune response in the Nile tilapia, Oreochromis niloticus. Egypt J Aquat Biol Fish 15(1):105–124. https://doi.org/10.21608/ejabf.2011.2081

  78. Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A et al (2018) Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture 491:94–100. https://doi.org/10.1016/j.aquaculture.2018.03.019

    Article  Google Scholar 

  79. Pirarat N, Pinpimai K, Rodkhum C, Chansue N et al (2015) Viability and morphological evaluation of alginate-encapsulated Lacticaseibacillus rhamnosus GG under simulated tilapia gastrointestinal conditions and its effect on growth performance, intestinal morphology and protection against Streptococcus agalactiae. Anim Feed Sci Technol 207:93–103. https://doi.org/10.1016/j.anifeedsci.2015.03.002

  80. Nakandakare IB, Iwashita MKP, de Carla Dias D, Tachibana L et al (2013) Desempenho produtivo e histomorfologia intestinal de juvenis de tilápia do nilo alimentados com probióticos. Acta Sci - Anim Sci 35(4):365–370. https://doi.org/10.4025/actascianimsci.v35i4.18610

  81. Yu L, Qiao N, Li T, Yu R et al (2019) Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ 6:1–18. https://doi.org/10.7717/peerj.6963

    Article  Google Scholar 

  82. Abu-Elala NM, Younis NA, AbuBakr HO, Ragaa NM et al (2018) Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. Egypt J Aquat Res 44(4):333–341. https://doi.org/10.1016/j.ejar.2018.11.001

  83. Van Doan H, Hoseinifar SH, Faggio C, Chitmanat C et al (2018) Effects of corncob derived xylooligosaccharide on innate immune response, disease resistance, and growth performance in Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture 495:786–793. https://doi.org/10.1016/j.fsi.2017.09.002

  84. El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MA, Dhama K, Abdel-Latif HM (2021) The functionality of probiotics in aquaculture: an overview. Fish Shellfish Immunol 117:36–52. https://doi.org/10.1016/j.fsi.2021.07.007

    Article  PubMed  Google Scholar 

  85. Heinrichs AJ, Jones CM, Heinrichs BS (2003) Effects of mannan oligosaccharide or antibiotics in neonatal diets on health and growth of dairy calves. J Dai Sci 86(12):4064–4069. https://doi.org/10.3168/jds.S0022-0302(03)74018-1

  86. Spring P, Wenk C, Dawson KA, Newman KE (2000) The Effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella-challenged broiler chicks. Poult Sci 79(2):205–211. https://doi.org/10.1093/ps/79.2.205

  87. Kishawy ATY, Sewid AH, Nada HS, Kamel MA et al (2020) Mannanoligosaccharides as a carbon source in biofloc boost dietary plant protein and water quality, growth, immunity and Aeromonas hydrophila resistance in Nile tilapia (Oreochromis niloticus). Animals 10(10):1–24. https://doi.org/10.3390/ani10101724

  88. Souza FPd, Lima ECSd, Pandolfi VCF, Leite NG et al (2020) Effect of β-glucan in water on growth performance, blood status and intestinal microbiota in tilapia under hypoxia. Aquacult Rep 17:100369. https://doi.org/10.1016/j.aqrep.2020.100369

    Article  Google Scholar 

  89. Levy-Pereira N, Yasui GS, Cardozo MV, Dias Neto J et al (2018) Immunostimulation and increase of intestinal lactic acid bacteria with dietary mannan-oligosaccharide in Nile tilapia juveniles. Rev Bras de Zootech 47. https://doi.org/10.1590/rbz4720170006

  90. Aryati Y, Widanarni W, Wahjuningrum D, Rusmana I et al (2021) The effect of dietary honey prebiotic on microbiota diversity in the digestive tract of Nile tilapia (Oreochromis niloticus) and its growth performance. Aquacult Res 52(3):1215–1226. https://doi.org/10.1111/are.14980

    Article  CAS  Google Scholar 

  91. Abd El-latif A, Abd El-Gawad E, Emam M (2015) Effect of dietary fructooligosaccharide supplementation on feed utilization and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings. Egypt J Aquac 5(3):1–16. https://doi.org/10.21608/eja.2019.46730

  92. Hoseinifar SH, Esteban MA, Cuesta A, Sun YZ (2015) Prebiotics and fish immune response: a review of current knowledge and future perspectives. Rev Fish Sci Aquac 23(4):315–328. https://doi.org/10.1080/23308249.2015.1052365

  93. Carbone D, Faggio C (2016) Importance of prebiotics in aquaculture as immunostimulants. Effects on immune system of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol 54:172–178. https://doi.org/10.1016/j.fsi.2016.04.011

  94. Qin C, Zhang Y, Liu W, Xu L et al (2014) Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀×Oreochromis aureus ♂. Fish Shellfish Immunol 40(1):267–274. https://doi.org/10.1016/j.fsi.2014.07.010

  95. Dinarello CA (2000) Proinflammatory Cytokines. https://doi.org/10.1378/chest.118.2.503

  96. Dawood MAO, Abdo SE, Gewaily MS, Moustafa EM et al (2020) The influence of dietary β-glucan on immune, transcriptomic, inflammatory and histopathology disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 98:301–311. https://doi.org/10.1016/j.fsi.2020.01.035

    Article  CAS  PubMed  Google Scholar 

  97. Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(2):137–151. https://doi.org/10.1016/j.fsi.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  98. Tiengtam N, Khempaka S, Paengkoum P, Boonanuntanasarn S (2015) Effects of inulin and Jerusalem artichoke (Helianthus tuberosus) as prebiotic ingredients in the diet of juvenile Nile tilapia (Oreochromis niloticus). Animal Feed Sci Technol 207:120–129. https://doi.org/10.1016/j.anifeedsci.2015.05.008

  99. Vechklang K, Lim C, Boonanuntanasarn S, Welker T et al (2012) Growth performance and resistance to Streptococcus iniae of juvenile Nile tilapia (Oreochromis niloticus) fed diets supplemented with GroBiotic-A and Brewtech dried brewers yeast. J Appl Aquac 24(3):183–198. https://doi.org/10.1080/10454438.2012.678786

  100. Salah AS, El Nahas AF, Mahmoud S (2017) Modulatory effect of different doses of β-1,3/1,6-glucan on the expression of antioxidant, inflammatory, stress and immune-related genes of Oreochromis niloticus challenged with Streptococcus iniae. Fish Shellfish Immunol 70:204–213. https://doi.org/10.1016/j.fsi.2017.09.008

  101. Yılmaz S, Yılmaz E, Dawood MAO, Ringø E, Ahmadifar E, Abdel-Latif HM (2021) Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture 737514. https://doi.org/10.1016/j.aquaculture.2021.737514

  102. de Azevedo RV, Filho JCF, Cardoso LD, Mattos DdC et al (2015) Economic evaluation of prebiotics, probiotics and symbiotics in juvenile Nile tilapia. Rev Ciencia Agronomica 46(1):72–79. [Online]. Available: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-66902015000100072&lang=pt%0Ahttp://www.scielo.br/pdf/rca/v46n1/0045-6888-rca-46-01-0072.pdf

  103. Cechim FE, Sales FB, Signor AA, Michels-Souza MA, et al (2015) Dietary mannanoligosaccharide influenced feed consumption and gut morphology of Nile tilapia raised in net-cage systems. Boletim do Instituto de Pesca 41(3):519–527. [Online]. Available: https://www.pesca.agricultura.sp.gov.br/boletim/index.php/bip/article/view/41_3_519-527. Date accessed: 06 Sep 2021

  104. Yuji-Sado R, Raulino-Domanski F, de Freitas PF, Baioco-Sales F (2015) Crecimiento, estado inmunológico y morfología intestinal de la tilapia del Nilo alimentadas con prebióticos (Mananoligosacáridos-MOS) en la dieta. Lat Am J Aquat Res 43(5):944–952. https://doi.org/10.3856/vol43-issue5-fulltext-14

  105. Dawood MAO, El-Shamaa IS, Abdel-Razik NI, Elkomy AH et al (2020) The effect of mannanoligosaccharide on the growth performance, histopathology, and the expression of immune and antioxidative related genes in Nile tilapia reared under chlorpyrifos ambient toxicity. Fish Shellfish Immunol 103:421–429. https://doi.org/10.1016/j.fsi.2020.05.061

    Article  CAS  PubMed  Google Scholar 

  106. Ayyat MS, Ayyat AMN, Naiel MAE, Al-Sagheer AA (2020) Reversal effects of some safe dietary supplements on lead contaminated diet induced impaired growth and associated parameters in Nile tilapia. Aquaculture 515:734580–734580. https://doi.org/10.1016/j.aquaculture.2019.734580

    Article  CAS  Google Scholar 

  107. Ayyat MS, Ayyat AMN, Al-Sagheer AA, El-Hais AEAM (2018) Effect of some safe feed additives on growth performance, blood biochemistry, and bioaccumulation of aflatoxin residues of Nile tilapia fed aflatoxin-B1 contaminated diet. Aquaculture 495:27–34. https://doi.org/10.1016/j.aquaculture.2018.05.030

    Article  CAS  Google Scholar 

  108. Şahan A, Duman S (2010) Influence of\beta-1, 3/1, 6 glucan applications on some non-specific cellular immune response and haematologic parameters of healthy Nile tilapia (Oreochromis niloticus L., 1758). Turk J Vet Anim Sci 34(1):75–81. https://journals.tubitak.gov.tr/veterinary/abstract.htm?id=10696

  109. Whittington R, Lim C, Klesius PH (2005) Effect of dietary β-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia. Oreochromis niloticus Aquaculture 248(1–4):217–225. https://doi.org/10.1016/j.aquaculture.2005.04.013

    Article  CAS  Google Scholar 

  110. Selim KM, Reda RM (2015) Beta-glucans and mannan oligosaccharides enhance growth and immunity in Nile tilapia. Lat Am J Aquat Res 77(1):22–30. https://doi.org/10.1080/15222055.2014.951812.

  111. Pilarski F, Ferreira de Oliveira CA, Darpossolo de Souza FPB, Zanuzzo FS (2017) Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish Immunol 70:25–29. https://doi.org/10.1016/j.fsi.2017.06.059

    Article  CAS  PubMed  Google Scholar 

  112. AeI E-M, Abd El Hakim Y, Neamat-Allah ANF, Baeshen M et al (2019) Immune-protective, antioxidant and relative genes expression impacts of β-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 94:427–433. https://doi.org/10.1016/j.fsi.2019.09.033

    Article  CAS  Google Scholar 

  113. Abd El-Gawad EA, Abd El-latif AM (2016) Enhancement of antioxidant activity, non-specific immunity and growth performance of Nile tilapia, Oreochromis Niloticus by dietary fructooligosaccharide. J Aquac Res Dev 07(05):1–7. https://doi.org/10.4172/2155-9546.1000427.

  114. Poolsawat L, Li X, Yang H, Yang P et al (2020) The potentials of fructooligosaccharide on growth, feed utilization, immune and antioxidant parameters, microbial community and disease resistance of tilapia (Oreochromis niloticus × O. aureus). Aquacult Res 51(11):4430–4442. https://doi.org/10.1111/are.14786

  115. Ibrahem MD, Fathi M, Mesalhy S, Abd El-Aty AM (2010) Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 29(2):241–246. https://doi.org/10.1016/j.fsi.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  116. Zhou L, Zhang J, Yan M, Tang S et al (2020) Inulin alleviates hypersaline-stress induced oxidative stress and dysbiosis of gut microbiota in Nile tilapia (Oreochromis niloticus). Aquaculture 529:735681–735681. https://doi.org/10.1016/j.aquaculture.2020.735681

    Article  CAS  Google Scholar 

  117. Tiengtam N, Paengkoum P, Sirivoharn S, Phonsiri K et al (2017) The effects of dietary inulin and Jerusalem artichoke (Helianthus tuberosus) tuber on the growth performance, haematological, blood chemical and immune parameters of Nile tilapia (Oreochromis niloticus) fingerlings. Aquacult Res 48(10):5280–5288. https://doi.org/10.1111/are.13341

    Article  CAS  Google Scholar 

  118. Plongpunjong BW, Phromkuntong V, Suanyuk W, Viriyapongsutee N (2011) Effect of prebiotics on growth performance and pathogenic inhibition in sex-reversed red tilapia (Oreochromis niloticus x Oreochromis mossambicus). Thai J Agric Sci 44:162–167. [Online]. Available: https://www.cabdirect.org/cabdirect/abstract/20133297798

  119. Van Doan H, Hoseinifar SH, Naraballobh W, Jaturasitha S et al (2019) Dietary inclusion of orange peels derived pectin and Lactiplantibacillus plantarum for Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc systems. Aquaculture 508:98–105. https://doi.org/10.1016/j.aquaculture.2019.03.067

    Article  CAS  Google Scholar 

  120. Mohd Din ARJ, Razak SA, Sabaratnam V (2012) Effect of mushroom supplementation as a prebiotic compound in super worm based diet on growth performance of red tilapia fingerlings. Sains Malaysiana 41(10):1197–1203. [Online]. Available: http://studentsrepo.um.edu.my/5782/23/04_Abd_Rahman_Sains_Malaysiana.pdf

  121. de Araújo ERL, Barbas LAL, Ishikawa CM, de Carla DD et al (2018) Prebiotic, probiotic, and synbiotic in the diet of Nile tilapia post-larvae during the sex reversal phase. Aquac Int 26(1):85–97. https://doi.org/10.1007/s10499-017-0201-7

    Article  CAS  Google Scholar 

  122. Ismail M, Wahdan A, Yusuf MS, Metwally E et al (2019) Effect of dietary supplementation with a synbiotic (Lacto Forte) on growth performance, haematological and histological profiles, the innate immune response and resistance to bacterial disease in Oreochromis niloticus. Aquacult Res 50(9):2545–2562. https://doi.org/10.1111/are.14212

    Article  CAS  Google Scholar 

  123. Sewaka M, Trullas C, Chotiko A, Rodkhum C et al (2019) Efficacy of synbiotic Jerusalem artichoke and Lacticaseibacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis niloticus). Fish Shellfish Immunol 86:260–268. https://doi.org/10.1016/j.fsi.2018.11.026

    Article  CAS  PubMed  Google Scholar 

  124. Abid A, Davies SJ, Waines P, Emery M et al (2013) Dietary synbiotic application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol 35(6):1948–1956. https://doi.org/10.1016/j.fsi.2013.09.039

    Article  CAS  PubMed  Google Scholar 

  125. Akrami R, Nasri-Tajan M, Jahedi A, Jahedi M et al (2015) Effects of dietary synbiotic on growth, survival, Lactobacillus bacterial count, blood indices and immunity of beluga (Huso huso Linnaeus, 1754) juvenile. Aquacult Nutr 21(6):952–959. https://doi.org/10.1111/anu.12219

    Article  CAS  Google Scholar 

  126. Lin S, Mao S, Guan Y, Luo L et al (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 342–343(1):36–41. https://doi.org/10.1016/j.aquaculture.2012.02.009

    Article  CAS  Google Scholar 

  127. Zhang CN, Li XF, Xu WN, Zhang DD et al (2015) Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on growth performance, body composition, intestinal enzymes activities and gut histology of triangular bream (Megalobrama terminalis). Aquacult Nutr 21(5):755–766. https://doi.org/10.1111/anu.12200

    Article  CAS  Google Scholar 

  128. Zhang Q, Yu H, Tong T, Tong W et al (2014) Dietary supplementation of Bacillus subtilis and fructooligosaccharide enhance the growth, non-specific immunity of juvenile ovate pompano, Trachinotus ovatus and its disease resistance against Vibrio vulnificus. Fish Shellfish Immunol 38(1):7–14. https://doi.org/10.1016/j.fsi.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  129. Huynh TG, Shiu YL, Nguyen TP, Truong QP et al (2017) Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: a review. Fish Shellfish Immunol 64:367–382. https://doi.org/10.1016/j.fsi.2017.03.035

    Article  CAS  PubMed  Google Scholar 

  130. Mazzola G, Aloisio I, Biavati B, Di Gioia D (2015) Development of a synbiotic product for newborns and infants. Lwt-Food Sci Technol 64(2):727–734. https://doi.org/10.1016/j.lwt.2015.06.033.

  131. Dawood MAO, Moustafa EM, Elbialy ZI, Farrag F et al (2020) Lactiplantibacillus plantarum L-137 and/or β-glucan impacted the histopathological, antioxidant, immune-related genes and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Res Vet Sci 130:212–221. https://doi.org/10.1016/j.rvsc.2020.03.019

    Article  CAS  PubMed  Google Scholar 

  132. Van Doan H, Hoseinifar SH, Tapingkae W, Seel-audom M et al (2020) Boosted growth performance, mucosal and serum immunity, and disease resistance Nile tilapia (Oreochromis niloticus) fingerlings using corncob-derived xylooligosaccharide and Lactiplantibacillus plantarum CR1T5. Probiotics and Antimicrob Proteins 12(2):400–411. https://doi.org/10.1007/s12602-019-09554-5

    Article  CAS  Google Scholar 

  133. Van Doan H, Hoseinifar SH, Dawood MAO, Chitmanat C et al (2017a) Effects of Cordyceps militaris spent mushroom substrate and Lactiplantibacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 70:87–94. https://doi.org/10.1016/j.fsi.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  134. Van Doan H, Hoseinifar SH, Tapingkae W, Tongsiri S et al (2016) Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactiplantibacillus plantarum in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 58:678–685. https://doi.org/10.1016/j.fsi.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  135. Van Doan H, Hoseinifar SH, Tapingkae W, Khamtavee P (2017b) The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 62:139–146. https://doi.org/10.1016/j.fsi.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  136. Liu W, Wang W, Ran C, He S et al (2017) Effects of dietary scFOS and Lactobacilli on survival, growth, and disease resistance of hybrid tilapia. Aquaculture 470:50–55. https://doi.org/10.1016/j.aquaculture.2016.12.013

    Article  CAS  Google Scholar 

  137. Jahari MA, Mustafa S, Akhmal M, Roslan H et al (2018) The effects of synbiotics and probiotics supplementation on growth performance of red hybrid tilapia, Oreochromis mossambicus x Oreochromis niloticus. J Biochem Microbiol Biotechnol 6(1):5–9. [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+effects+of+synbiotics+and+probiotics+supplementation+on+growth+performance+of+red+hybrid+tilapia%2C+Oreochromis+mossambicus+x+Oreochromis+niloticus&btnG

  138. Hassaan MSM, Moustafa MMA, Refaat MH (2015) The influence of synbiotic on growth and expression of GH, GHR1 and IGF-I genes in Oreochromis niloticus L fingerlings. J Fish Aquac 6(1):176–182. [Online]. Available: https://fagr.stafpu.bu.edu.eg/Genetics/1200/publications/HodaAliSalemEl-Garhy_MohamedHassanRefaatMohamedIsmail_6_1_2_JFA.pdf

  139. de Azevedo RV, Fosse Filho JC, Pereira SL, Cardoso LD et al (2016) Mananoligossacarídeo e Bacillus subtilis em dietas para tilápia do Nilo (Oreochromis niloticus). Acta Sci- Anim Sci 38(4):347–353. https://doi.org/10.4025/actascianimsci.v38i4.31360

  140. Widanarni, Tanbiyaskur (2015) Application of probiotic, prebiotic and synbiotic for the control of Streptococcosis in tilapia Oreochromis niloticus. Pakistan J Biol Sci 18(2):59–66. https://doi.org/10.3923/pjbs.2015.59.66

  141. Agung LA, Widanarni, Yuhana M (2015) Application of micro-encapsulated probiotic Bacillus NP5 and prebiotic mannan oligosaccharide (MoS) to prevent Streptococcosis on tilapia Oreochromis niloticus. Res J Microbiol 10(12):571–581. https://doi.org/10.3923/jm.2015.571.581

  142. Das A, Nakhro K, Chowdhury S, Kamilya D (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol 35(5):1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  143. Saputra F, Shiu YL, Chen YC, Puspitasari AW et al (2016) Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 58:397–405. https://doi.org/10.1016/j.fsi.2016.09.046

    Article  CAS  PubMed  Google Scholar 

  144. Aly SM, Mohamed MF, John G (2008) Effect of probiotics on the survival, growth and challenge infection in tilapia Nilotica (Oreochromis niloticus). Aquacult Res 39(6):647–656. https://doi.org/10.1111/j.1365-2109.2008.01932.x

    Article  CAS  Google Scholar 

  145. Wael G, Nouh MFM, Salah MA (2009) Pathological evaluation to the effect of some probiotics on the health and immune status of Nile Tilapia (Oreochromis niloticus). Egypt J Comp Path Clinic Path 22(2):233–249. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1071.4315&rep=rep1&type=pdf

  146. Begum N, Islam M, Haque A, Suravi I (2017) Growth and yield of monosex tilapia Oreochromis niloticus in floating cages fed commercial diet supplemented with probiotics in freshwater pond. Sylhet Bangladesh J Zoo 45(1):27–36. [Online]. Available: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Growth+and+yield+of+monosex+tilapia+Oreochromis+niloticus+in+floating+cages+fed+commercial+diet+supplemented+with+probiotics+in+freshwater+pond%2C+Sylhet&btnG

  147. Doan HV, Hoseinifar SH, Elumalai P, Tongsiri S et al (2018) Effects of orange peels derived pectin on innate immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus) cultured under indoor biofloc system. Fish Shellfish Immunol 80:56–62. https://doi.org/10.1016/j.fsi.2018.05.049

    Article  CAS  PubMed  Google Scholar 

  148. Standen BT, Peggs DL, Rawling MD, Foey A et al (2016) Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish Shellfish Immunol 49:427–435. https://doi.org/10.1016/j.fsi.2015.11.037

    Article  CAS  PubMed  Google Scholar 

  149. Tachibana L, Telli GS, de Carla DD, Gonçalves GS et al (2020) Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquacult Rep 16:100277–100277. https://doi.org/10.1016/j.aqrep.2020.100277

    Article  Google Scholar 

  150. Lara-Flores M, Olvera-Novoa MA, Guzmán-Méndez BE, López-Madrid W (2003) Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 216(1–4):193–201. https://doi.org/10.1016/S0044-8486(02)00277-6

    Article  Google Scholar 

  151. Zhou Z, Liu Y, He S, Shi P et al (2009) Effects of dietary potassium diformate (KDF) on growth performance, feed conversion and intestinal bacterial community of hybrid tilapia (Oreochromis niloticus ♀×O. aureus ♂). Aquaculture 291(1):89–94. https://doi.org/10.1016/j.aquaculture.2009.02.043

  152. Feliatra F, Lukistyowati I, Nursyirwani N, Melina D et al (2018) Comparative study between probiotics isolated from giant freshwater prawns and giant tiger prawns in improving the health of nile tilapia (Oreochromis nilotius). IOP Conf Ser Earth Environ Sci 216(1). https://doi.org/10.1088/1755-1315/216/1/012009

  153. Sutthi N, Thaimuangphol W, Rodmongkoldee M, Leelapatra W et al (2018) Growth performances, survival rate, and biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in water treated with probiotic. Comp Clin Path 27(3):597–603. https://doi.org/10.1007/s00580-017-2633-x.

  154. Dawood MAO, Eweedah NM, Moustafa EM, Shahin MG (2020) Synbiotic effects of Aspergillus oryzae and β-glucan on growth and oxidative and immune responses of Nile tilapia. Oreochromis niloticus Probiotics and Antimicrob Proteins 12(1):172–183. https://doi.org/10.1007/s12602-018-9513-9

    Article  CAS  Google Scholar 

  155. Girija V, Malaikozhundan B, Vaseeharan B, Vijayakumar S, Gobi N, Herrera MDV, Chen JC, Santhanam P (2018) In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish challenged with GFP tagged Vibrio parahaemolyticus Dahv2. Microb Pathog 114:274–280. https://doi.org/10.1016/j.micpath.2017.11.058

  156. Vinoj G, Vaseeharan B, Thomas S, Spiers AJ, Shanthi S (2014) Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar Biotechnol 16(6):707–715. https://doi.org/10.1007/s10126-014-9585-9

    Article  CAS  Google Scholar 

  157. Gewaily MS, Shukry M, Abdel-Kader MF, Alkafafy M, Farrag FA, Moustafa EM, Van Doan H, Abd-Elghany MF, Abdelhamid AF, Eltanahy A, Dawood MAO (2021) Dietary Lactiplantibacillus plantarum relieves Nile tilapia (Oreochromis niloticus) juvenile from oxidative stress, immunosuppression, and inflammation induced by deltamethrin and Aeromonas hydrophila. Front Mar Sci 8. https://doi.org/10.11233/aquaculturesci.57.609

  158. Mehrim I (2009) Effect of dietary supplementation of Biogen® (commercial probiotic) on mono-sex nile tilapia Oreochromis niloticus under different stocking densities. J Fish Aquat Sci 4(6):261–273. https://doi.org/10.3923/jfas.2009.261.273

  159. Standen BT, Rawling MD, Davies SJ, Castex M, Foey A, Gioacchini G, Carnevali O, Merrifield DL (2013) Probiotic Pediococcus acidilactici modulates both localised intestinal-and peripheral-immunity in tilapia (Oreochromis niloticus). Fish Shellfish Immunol 35(4):1097–1104. https://doi.org/10.1016/j.fsi.2013.07.018

  160. Divya M, Gopi N, Iswarya A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Vaseeharan B (2020) β-Glucan extracted from eukaryotic single-celled microorganism Saccharomyces cerevisiae: dietary supplementation and enhanced ammonia stress tolerance on Oreochromis mossambicus. Microb Pathog 139:103917. https://doi.org/10.1016/j.micpath.2019.103917

    Article  CAS  PubMed  Google Scholar 

  161. Ahmed M, Abdullah N, Shuib AS, Abdul Razak S (2017) Influence of raw polysaccharide extract from mushroom stalk waste on growth and pH perturbation induced-stress in Nile tilapia, Oreochromis niloticus. Aquaculture 468:60–70. https://doi.org/10.1016/j.aquaculture.2016.09.043

  162. Srisapoome P, Areechon N (2017) Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): laboratory and on-farm trials. Fish Shellfish Immunol 67:199–210. https://doi.org/10.1016/j.fsi.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  163. Van Doan H, Hoseinifar SH, Ringø E, Ángeles Esteban M, Dadar M, Dawood MAO, Faggio C (2020) Host-associated probiotics: a key factor in sustainable aquaculture. Rev Fish Sci 28(1):16–42. https://doi.org/10.1080/23308249.2019.1643288

    Article  Google Scholar 

  164. Ushakova NA, Pravdin VG, Kravtsova LZ, Ponomarev SV, Gridina TS, Ponomareva EN, Rudoy DV, Chikindas ML (2021) Complex bioactive supplements for aquaculture—evolutionary development of probiotic concepts. Probiotics Antimicrob Proteins 1–13. https://doi.org/10.1007/s12602-021-09835-y

  165. Gupta S, Fečkaninová A, Lokesh J, Koščová J, Sørensen M, Fernandes J, Kiron V (2019) Lactobacillus dominate in the intestine of Atlantic salmon fed dietary probiotics. Front Microbiol 9:3247. https://doi.org/10.3389/fmicb.2018.03247

    Article  PubMed  PubMed Central  Google Scholar 

  166. Dawood MAO, Koshio S, Esteban MÁ (2018) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquac 10(4):950–974. https://doi.org/10.1111/raq.12209

    Article  Google Scholar 

  167. Dawood MAO, Abo-Al-Ela HG, Hasan MT (2020) Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol 97:268–282. https://doi.org/10.1016/j.fsi.2019.12.054

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Muziri Mugwanya, Mahmoud A.O. Dawood, Fahad Kimera, Hani Sewilama; funding acquisition: Muziri Mugwanya, Mahmoud A.O. Dawood, Fahad Kimera, Hani Sewilama; Supervision, Mahmoud A.O. Dawood, Hani Sewilama; validation: Muziri Mugwanya, Hani Sewilama; writing—original draft: Muziri Mugwanya, Hani Sewilama; writing—review and editing: Muziri Mugwanya, Mahmoud A.O. Dawood, Fahad Kimera, Hani Sewilama. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Mahmoud A. O. Dawood or Hani Sewilam.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugwanya, M., Dawood, M.A.O., Kimera, F. et al. Updating the Role of Probiotics, Prebiotics, and Synbiotics for Tilapia Aquaculture as Leading Candidates for Food Sustainability: a Review. Probiotics & Antimicro. Prot. 14, 130–157 (2022). https://doi.org/10.1007/s12602-021-09852-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09852-x

Keywords

Navigation