Skip to main content

Advertisement

Log in

Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The development of adjuvant therapies for obesity treatment is justified by the high prevalence of this disease worldwide, and the relationship between obesity and intestinal microbiota is a promising target for obesity treatment. Therefore, this study aimed at investigating the adjuvant treatment of obesity through the use of potential probiotics and antibiotics, either separately or sequentially. In the first phase of the experiment, animals had diet-induced obesity with consumption of a high saturated fat diet and a fructose solution. After this period, there was a reduction in caloric supply, that is the conventional treatment of obesity, and the animals were divided into 5 experimental groups: control group (G1), obese group (G2), potential probiotic group (G3), antibiotic group (G4), and antibiotic followed by potential probiotic group (G5). The adjuvant treatments lasted 4 weeks and were administered daily, via gavage: Animals in G1 and G2 received distilled water, the G3 obtained Lactobacillus gasseri LG-G12, and the G4 received ceftriaxone. The G5 received ceftriaxone for 2 weeks, followed by the offer of Lactobacillus gasseri LG-G12 for another 2 weeks. Parameters related to obesity, such as biometric measurements, food consumption, biochemical tests, histological assessments, short-chain fatty acids concentration, and composition of the intestinal microbiota, were analyzed. The treatment with caloric restriction and sequential supply of antibiotics and potential probiotics was able to reduce biometric measures, increase brown adipose tissue, and alter the intestinal microbiota phyla, standing out as a promising treatment for obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica (ABESO) (2016) Diretrizes brasileiras de obesidade. https://abeso.org.br/diretrizes/. Accessed 4 Apr 2020

  2. Agência Nacional de Saúde Suplementar (ANS) (2017) Manual de diretrizes para o enfrentamento da obesidade na saúde suplementar brasileira. http://www.ans.gov.br/images/Manual_de_Diretrizes_para_o_Enfrentamento_da_Obesidade_na_Sa%C3%BAde_Suplementar_Brasileira.pdf. Accessed 4 Apr 2020

  3. World Gastroenterology Organisation (WGO) (2011) World Gastroenterology Organisation global guideline. Obesity. https://www.worldgastroenterology.org/guidelines/global-guidelines/obesity. Accessed 4 Apr 2020

  4. Cerdó T, García-Santos JA, G Bermúdez M, Campoy C (2019) The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11:635. https://doi.org/10.3390/nu11030635

  5. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723. https://doi.org/10.1073/pnas.0407076101

  6. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R (2019) Gut microbiota and obesity: a role for probiotics. Nutrients 11:2690. https://doi.org/10.3390/nu11112690.

  7. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P (2017) The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 15:630–638. https://doi.org/10.1038/nrmicro.2017.58

  8. Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ (2019) Role of the microbiome in human development. Gut 68:1108–1114. https://doi.org/10.1136/gutjnl-2018-317503

  9. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

  10. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. https://doi.org/10.1038/nature11552

  11. Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf Filho P, Vassallo J, Dias JC, Kubota LT, Carvalheira JBC, Saad MJA (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55:2823–2834. https://doi.org/10.1007/s00125-012-2648-4

  12. Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, Seong JK, Seok YJ, Kim JB (2015) Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J 29:2397–2411. https://doi.org/10.1096/fj.14-265983

  13. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos VM, Zucker JD, Raes J, Hansen T, MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506

  14. Rajpal DK, Klein JL, Mayhew D, Boucheron J, Spivak AT, Kumar V, Ingraham K, Paulik M, Chen L, Horn SV, Thomas E, Sathe G, Livi GP, Holmes DJ, Brown JR (2015) Selective spectrum antibiotic modulation of the gut microbiome in obesity and diabetes rodent models. PLoS One 10:e0145499. https://doi.org/10.1371/journal.pone.0145499

  15. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Male MC (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:14. https://doi.org/10.3390/microorganisms7010014

  16. Vaughn AC, Cooper EM, DiLorenzo PM, O´Loughlin LJ, Konkel ME, Peters JH, Hajnal A, Sen T, Lee SH, de La Serre CB, Czaja K (2017) Energy-dense diet triggers changes in gut microbiota, reorganization of gut-brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp (Wars) 77:18–30. https://doi.org/10.21307/ane-2017-033

  17. Barengolts E, Smith ED, Reutrakul S, Tonucci L, Anothaisintawee T (2019) The effect of probiotic yogurt on glycemic control in type 2 diabetes or obesity: a meta-analysis of nine randomized controlled trials. Nutrients 11:671. https://doi.org/10.3390/nu11030671

  18. Xie C, Halegoua-DeMarzio D (2019) Role of probiotics in non-alcoholic fatty liver disease: does gut microbiota matter? Nutrients 11:2837. https://doi.org/10.3390/nu11112837

  19. Eyupoglu ND, Ergunay K, Acikgoz A, Akyon Y, Yilmaz E, Yildiz BO (2020) Gut microbiota and oral contraceptive use in overweight and obese patients with polycystic ovary syndrome. J Clin Endocrinol Metab 105:12. https://doi.org/10.1210/clinem/dgaa600

  20. Baarlen PV, Wells J, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34:208–215. https://doi.org/10.1016/j.it.2013.01.005

  21. Food and Agriculture Organization of the United Nations (FAO/WHO) (2001) Expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. http://www.fao.org/3/a-a0512e.pdf. Accessed 4 Apr 2020

  22. Kong C, Gao R, Yan X, Huang L, Qin H (2019) Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60:175–184. https://doi.org/10.1016/j.nut.2018.10.002

  23. Food and Agriculture Organization of the United Nations (FAO/WHO) (2002) Guidelines for the evaluation of probiotics in food. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 4 April 2020

  24. Ambrose NS, Johnson M, Burdon DW, Keighley MR (1985) The influence of single dose intravenous antibiotics on faecal flora and emergence of Clostridium difficile. J Antimicrob Chemother 15:319–326. https://doi.org/10.1093/jac/15.3.31

  25. De La Cochetière MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Doré J (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588–5592. https://doi.org/10.1128/JCM.43.11.5588-5592.20052005

  26. Pallav K, Dowd SE, Villafuerte J, Yang X, Kabbani T, Hansen J, Dennis M, Leffler DA, Newburg DS, Kelly CP (2014) Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial. Gut Microbes 5:456–467. https://doi.org/10.4161/gmic.29558

  27. Rashid MU, Rosenborg S, Panagiotidis G, Lofdal KS, Weintraub A, Nord CE (2015) Ecological effect of ceftazidime/avibactam on the normal human intestinal microbiota. Int J Antimicrob Agents 46:60–65. https://doi.org/10.1016/j.ijantimicag.2015.02.027

  28. Pidot SJ, Coyne S, Kloss F, Hertweck C (2014) Antibiotics from neglected bacterial sources. Int J Med Microbiol 304:14–22. https://doi.org/10.1016/j.ijmm.2013.08.011

  29. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y (2014) Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53:599–606. https://doi.org/10.1007/s00394-013-0568-9

  30. Agência Nacional de Vigilância Sanitária (ANVISA) (2008) Resolução RDC número 2, de 7 de janeiro de 2002. Regulamento técnico de substâncias bioativas e probióticas isoladas com alegação de propriedades funcional ou de saúde. http://portal.anvisa.gov.br/documents/10181/2718376/RDC_02_2002_COMP.pdf/68a25113-35e2-4327-a75f-ae22e714ca7. Accessed 4 Apr 2020

  31. Kang JH, Yun SI, Park HO (2010) Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol 48:712–714. https://doi.org/10.1007/s12275-010-0363-8

  32. Kang JH, Yun SI, Park MH, Jeong SY, Park HO (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8:e54617. https://doi.org/10.1371/journal.pone.0054617

  33. Shi L, Ming L, Miyazawa K, Li Y (2013) Effects of heat-inactivated Lactobacillus gasseri TMC0356 on metabolic characteristics and immunity of rats with the metabolic syndrome. Br J Nutr 109:263–272. https://doi.org/10.1017/S000711451200116X

  34. World Health Organization (WHO) (2020) Obesity and overweight – Fact sheet. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 15 Feb 2021

  35. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB (2003) Years of life lost due to obesity. JAMA 298:187–193. https://doi.org/10.1001/jama.289.2.187

  36. Kawano M, Miyoshi M, Ogawa A, Sakai F, Kadoka Y (2016) Lactobacillus gasseri SBT2055 inhibits adipose tissue inflammation and intestinal permeability in mice fed a high-fat diet. J Nutr Sci 5:e23 https://doi.org/10.1017/jns.2016.12

  37. Mazloom K, Siddiqi I, Covasa M (2019) Probiotics: how effective are they in the fight against obesity? Nutrients 11:258. https://doi.org/10.3390/nu11020258

  38. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrink AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferriéres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772. https://doi.org/10.2337/db06-1491

  39. Auda SH, Mrestani Y, Nies DH, Grosse C, Neubert RH (2009) Preparation, physicochemical characterization and biological evaluation of cefodizime metal ion complexes. J Pharm Pharmacol 61:753–758. https://doi.org/10.1211/jpp.61.06.0007

  40. Mrestani Y, Bretschneider B, Hartl A, Brandsch M, Neubert RH (2004) Influence of enhancers on the absorption and on the pharmacokinetics of cefodizime using in-vitro and in-vivo models. J Pharm Pharmacol 56:485–493. https://doi.org/10.1211/0022357023187

  41. Conselho Nacional de Controle de Experimentação Animal (CONSEA) (2008) Lei no 11794, de 8 de outubro de 2008. http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11794.html. Accessed 16 Feb 2021

  42. Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Macé K, Chou CJ (2008) Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22:2416–2426. https://doi.org/10.1096/fj.07-102723

  43. Vedova MCD, Muñoz MD, Santillan LD, Plateo-Pignatari MG, Germanó MJ, Tosi MER, Garcia S, Gomez NN, Fornes MW, Mejiba SEG, Ramirez DC (2016) A mouse model of diet-induced obesity resembling most features of human metabolic syndrome. Nutr Metab Insights 9:93–102. https://doi.org/10.4137/NMI.S32907

  44. Reeves PG, Nielsen FH, Fahey GCJr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951. https://doi.org/10.1093/jn/123.11.19391939

  45. Friedwald WT, Levy RI, Fredrickson DS (1972) Estimation the concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Article  Google Scholar 

  46. Rosa DD, Grzeskowiak LM, Ferreira CLLF, Fonseca ACM, Reis SA, Dias MM, Siqueira NP, Silva LL, Neves CA, Oliveira LL, Machado ABF, Peluzio MCG (2016) Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome. Food Funct 7:3390–3401. https://doi.org/10.1039/c6fo00339g

  47. Dias MV, Castro AP, Campos CC, Souza-Silva TG, Gonçalves RV, Souza RLM, Marques MJ, Novaes RD (2019) Doxycycline hyclate: a schistosomicidal agente in vitro with immunomodulatory potential on granulomatous inflammation in vivo. Int Immunopharmacol 70:324–337. https://doi.org/10.1016/j.intimp.2019.02.032

  48. Carson FL, Martin JH, Lynn JA (1973) Formalin fixation for electron microscopy: a re-evaluation. Am J Clin Pathol 59:365–373. https://doi.org/10.1093/ajcp/59.3.365

  49. McManus JFA, Mowry RW (1960) Staining methods: histologic and histochemical medical division. Harper & Brother, New York

  50. Rosa DD, Sales RL, Moraes LFS, Lourenço FC, Neves CA, Sabarense CM, Ribeiro SMR, Peluzio MCG (2010) Flaxseed, olive and fish oil influence plasmatic lipids, lymphocyte migration and morphometry of the intestinal of Wistar rats. Acta Cir Bras 25:275–280. https://doi.org/10.1590/S0102-86502010000300010

  51. Jin W, Wang H, Ji Y, Hu Q, Yan W, Chen G, Yin H (2008) Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine 44:135–140. https://doi.org/10.1016/j.cyto.2008.07.005

  52. Siegfried VR, Ruckermann H, Stumpf G, Siegfried BD, Ruckemann H, Siegfried VR, Siegfried R, Siegfried MR (1984) Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtsch

  53. Zhang BW, Li M, Ma LC, Wei FW (2006) A widely applicable protocol for DNA isolation from fecal samples. Biochem Genet 44:503–512. https://doi.org/10.1007/s10528-006-9050-1

  54. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

  55. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

  56. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-D596. https://doi.org/10.1093/nar/gks1219

  57. McMurdie PJ and Homes S (2012) Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput 235–246

  58. Bhalodi AA, Van TSRE, Virk HS, Wiersinga WJ (2019) Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 74:i6–i15. https://doi.org/10.1093/jac/dky530

  59. Forte N, Fernández-Rilo AC, Palomba L, Di Marzo V, Cristiano L (2020) Obesity affects the microbiota-gut-brain axis and the regulation there of by endocannabinoids and related mediators. Int J Mol Sci 21:1554. https://doi.org/10.3390/ijms21051554

  60. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A (2016) Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci 17:928. https://doi.org/10.3390/ijms17060928

  61. Choi WJ, Dong HJ, Jeong HU, Ryu DW, Song SM, Kim YR, Jung HH, Kim TH, Kim YH (2020) Lactobacillus plantarum LMT1-48 exerts anti-obesity effect in high-fat diet induced obese mice by regulating expression of lipogenic genes. Sci Re 10:869. https://doi.org/10.1038/s41598-020-57615-5

  62. Marlatt KL, Ravussin E (2017) Brown adipose tissue: an update on recent findings. Curr Obes Rep 6:389–396. https://doi.org/10.1007/s13679-017-0283-6

  63. Park S-S, Lee Y-J, Kang H, Yang G, Hong EJ, Lim JY, Oh S, Kim E (2019) Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through PPARγ signaling. Sci Rep 9:20152. https://doi.org/10.1038/s41598-019-56817-w

  64. Sociedade Brasileira de Cardiologia (SBC) (2017) Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose - 2017. Arquivos Brasileiros de Cardiologia 109. http://publicacoes.cardiol.br/2014/diretrizes/2017/02_DIRETRIZ_DE_DISLIPIDEMIAS.pdf. Accessed 4 Apr 2020

  65. Lau E, Neves JS, Ferreira-Magalhães M, Carvalho D, Freitas P (2019) Probiotic ingestion, obesity, and metabolic-related disorders: results from NHANES, 1999–2014. Nutrients. 11:1482. https://doi.org/10.3390/nu11071482

  66. Power SE, O’Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111: 387–402. https://doi.org/10.1017/S0007114513002560

  67. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165

  68. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772, 2008. https://doi.org/10.1073/pnas.0808567105

  69. Wadden TA, Berkowitz RI, Womble LG, Sarwer DB, Phelan S, Cato RK, Hesson LA, Osei SY, Kaplan R, Stunkard AJ (2005) Randomized trial of lifestyle modification and pharmacotherapy for obesity. N Engl J Med: 353:2111–2120. https://doi.org/10.1056/NEJMoa050156

  70. Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP, Milagro FI, Martinez JA (2015) Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Benef Microbes 6:97–111. https://doi.org/10.3920/BM2013.0097

Download references

Acknowledgements

The authors thank the Laboratório de Nutrição Experimental (DNS/UFV), Laboratório de Microbiologia de Anaeróbios (DMB/UFV) e Laboratório de Análises Clínicas (DNS/UFV), for making equipment and structure available for carrying out the analysis of this work.

Funding

The authors received financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

MMD participated in all production stages of this article (handling the animals, execution of analysis, analysis of the results and writing of the article); SARL and RCF assisted in the handling of animals, in the execution of analyzes, and in writing of this article; LLC, TAOM, SSP, LLO, and MCGP guided in the choice of the analyzes performed, participated in the analysis of the results, and assisted in the writing of this article. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mariana de Moura e Dias.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Committee on Animals Use of Universidade Federal de Viçosa, under protocol 33/2018. The principles recommended by the Nacional Council for the Control of Animal Experimentation were followed [41].

Consent for Publication

All authors consent with the publication of this article.

Conflict of Interest

The authors declare that they have no conflict of interest.

Availability of Data and Material

All data and materials are available from the corresponding authors on reasonable request.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura e Dias, M., dos Reis Louzano, S.A., da Conceição, L.L. et al. Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity. Probiotics & Antimicro. Prot. 13, 1621–1631 (2021). https://doi.org/10.1007/s12602-021-09760-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09760-0

Keywords

Navigation