Skip to main content
Log in

Lactobacillus rhamnosus JYLR-005 Prevents Thiram-Induced Tibial Dyschondroplasia by Enhancing Bone-Related Growth Performance in Chickens

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Tibial dyschondroplasia (TD) is a leg disorder caused by the abnormal development of the tibia in fast-growing poultry. Lactobacillus rhamnosus (L. rhamnosus) strains have been reported to have effects on increasing bone growth and improving osteoporosis in animals. However, whether L. rhamnosus JYLR-005 can improve bone growth in TD chickens remains unclear. In this study, we noted that L. rhamnosus JYLR-005 could not reduce the suppression of the production performance of TD broilers (p > 0.05) but had a slight protective effect on the broiler survival rate (χ2 = 5.571, p = 0.062). However, for thiram-induced TD broiler chickens, L. rhamnosus JYLR-005 could promote tibia growth by increasing tibia-related parameters, including the tibia weight (day 11, p = 0.040), tibia length (day 15, p = 0.013), and tibia mean diameter (day 15, p = 0.035). Moreover, L. rhamnosus JYLR-005 supplementation improved the normal growth and development of the tibial growth plate by maintaining the morphological structure of the chondrocytes and restored the balance of calcium and phosphorus. Taken together, these findings provide a proof of principle that L. rhamnosus JYLR-005 may represent a therapeutic strategy to treat leg disease in chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TD:

Tibial dyschondroplasia

L. rhamnosus :

Lactobacillus rhamnosus

GM:

Gut microbiota

ADFI:

Daily feed intake

ADG:

Average daily weight gain

Ca:

Calcium

P:

Phosphorus

Mg:

Magnesium

References

  1. Yan FF, Wang WC, Cheng HW (2018) Bacillus subtilis based probiotic improved bone mass and altered brain serotoninergic and dopaminergic systems in broiler chickens. J Funct Foods 49:501–509. https://doi.org/10.1016/j.jff.2018.09.017

    Article  CAS  Google Scholar 

  2. Huang S, Kong A, Cao Q, Tong Z, Wang X (2019) The role of blood vessels in broiler chickens with tibial dyschondroplasia. Poult Sci 98:6527–6532. https://doi.org/10.3382/ps/pez497

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Huang S, Tong X, Zhang L, Jiang X, Zhang H, Mehmood K, Li J (2019) Chlorogenic acid alleviates thiram-induced tibial dyschondroplasia by modulating caspases, BECN1 expression and ECM degradation. Int J Mol Sci 20:3160. https://doi.org/10.3390/ijms20133160

    Article  CAS  PubMed Central  Google Scholar 

  4. Huang SC, Zhang LH, Zhang JL, Rehman MU, Tong XL, Qiu G, Jiang X, Iqbal M, Shahzad M, Shen YQ, Li JK (2018) Role and regulation of growth plate vascularization during coupling with osteogenesis in tibial dyschondroplasia of chickens. Sci Rep 8:3680. https://doi.org/10.1038/s41598-018-22109-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang S, Rehman MU, Lan Y, Qiu G, Zhang H, Iqbal MK, Luo H, Mehmood K, Zhang L, Li J (2017) Tibial dyschondroplasia is highly associated with suppression of tibial angiogenesis through regulating the HIF-1α/VEGF/VEGFR signaling pathway in chickens. Sci Rep 7:9089. https://doi.org/10.1038/s41598-017-09664-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Whitehead CC (2004) Overview of bone biology in the egg-laying hen. Poult Sci 83:193–199. https://doi.org/10.1093/ps/83.2.193

    Article  CAS  PubMed  Google Scholar 

  7. Di Stefano M, Veneto G, Malservisi S, Corazza GR (2001) Small intestine bacterial overgrowth and metabolic bone disease. Digest Dis Sci 46:1077–1082. https://doi.org/10.1023/a:1010722314493

    Article  PubMed  Google Scholar 

  8. Stotzer PO, Johansson C, Mellstrom D, Lindstedt G, Kilander AF (2003) Bone mineral density in patients with small intestinal bacterial overgrowth. Hepatogastroenterology 50:1415–1418

    PubMed  Google Scholar 

  9. Chen YC, Greenbaum J, Shen H, Deng HW (2017) Association between gut microbiota and bone health: potential mechanisms and prospective. J Clin Endocrinol Metab 102:3635–3646. https://doi.org/10.1210/jc.2017-00513

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ohlsson C, Sjogren K (2015) Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26:69–74. https://doi.org/10.1016/j.tem.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Gilani S, Howarth GS, Nattrass G, Kitessa SM, Barekatain R, Forder R, Tran CD, Hughes RJ (2018) Gene expression and morphological changes in the intestinal mucosa associated with increased permeability induced by short-term fasting in chickens. J Anim Physiol Anim Nutr 102:e653–e661. https://doi.org/10.1111/jpn.12808

    Article  CAS  Google Scholar 

  12. Qin L, Ji W, Wang J, Li B, Hu J, Wu X (2019) Effects of dietary supplementation with yeast glycoprotein on growth performance, intestinal mucosal morphology, immune response and colonic microbiota in weaned piglets. Food Funct 10:2359–2371. https://doi.org/10.1039/c8fo02327a

    Article  CAS  PubMed  Google Scholar 

  13. Knap I, Kehlet AB, Bennedsen M, Mathis GF, Hofacre CL, Lumpkins BS, Jensen MM, Raun M, Lay A (2011) Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult Sci 90:1690–1694. https://doi.org/10.3382/ps.2010-01056

    Article  CAS  PubMed  Google Scholar 

  14. Mutus R, Kocabagli N, Alp M, Acar N, Eren M, Gezen SS (2006) The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poult Sci 85:1621–1625. https://doi.org/10.1093/ps/85.9.1621

    Article  CAS  PubMed  Google Scholar 

  15. Amin N, Boccardi V, Taghizadeh M, Jafarnejad S (2020) Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res 32:363–371. https://doi.org/10.1007/s40520-019-01223-5

    Article  PubMed  Google Scholar 

  16. Tyagi AM, Yu M, Darby TM, Vaccaro C, Li J, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM, Pacifici R (2018) The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 49: 1116-1131.e7. https://doi.org/10.1016/j.immuni.2018.10.013

  17. Basturk A, Isik İ, Atalay A, Yılmaz A (2020) Investigation of the efficacy of Lactobacillus rhamnosus GG in infants with cow’s milk protein allergy: a randomised double-blind placebo-controlled trial. Probiotics Antimicrob Proteins 12:138–143. https://doi.org/10.1007/s12602-019-9516-1

    Article  CAS  PubMed  Google Scholar 

  18. Anas A, Rabie I, Abdur-Rahman AF (2012) Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop Anim Health Pro 45:1017–1024. https://doi.org/10.1007/s11250-012-0326-7

    Article  Google Scholar 

  19. Sun ZW, Fan QH, Wang XX, Guo YM, Wang HJ, Dong X (2018) High stocking density alters bone-related calcium and phosphorus metabolism by changing intestinal absorption in broiler chickens. Poult Sci 97:219–226. https://doi.org/10.3382/ps/pex294

    Article  CAS  PubMed  Google Scholar 

  20. Shim MY, Karnuah AB, Mitchell AD, Anthony NB, Pesti GM, Aggrey SE (2012) The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers. Poult Sci 91:1790–1795. https://doi.org/10.3382/ps.2011-01968

    Article  CAS  PubMed  Google Scholar 

  21. Pan YL, Si SF, Cao WC, Ma ML, Yan HW, Wu YJ (2018) A Lactobacillus rhamnosus JYLR-005 and its hypoglycemic products and applications. China Patent No CN2018110815666[P] 2018-12-21

  22. Huang S, Zhang L, Rehman MU, Iqbal MK, Lan Y, Mehmood K, Zhang H, Qiu G, Nabi F, Yao W, Wang M, Li J (2017) High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens. PLoS One 12:e0173698. https://doi.org/10.1371/journal.pone.0173698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barshan S, Khalaji S, Hedayati M, Yari M (2019) Influence of bone meal degelatinisation and calcium source and particle size on broiler performance, bone characteristics and digestive and plasma alkaline phosphatase activity. Br Poult Sci 60:297–308. https://doi.org/10.1080/00071668.2019.1587151

    Article  CAS  PubMed  Google Scholar 

  24. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507:323–328. https://doi.org/10.1038/nature13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Battaglioli EJ, Hale VL, Chen J, Jeraldo P, Ruiz-Mojica C, Schmidt BA, Rekdal VM, Till LM, Huq L, Smits SA, Moor WJ, Jones-Hall Y, Smyrk T, Khanna S, Pardi DS, Grover M, Patel R, Chia N, Nelson H, Sonnenburg JL, Farrugia G, Kashyap PC (2018) Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med 10:eaam7019. https://doi.org/10.1126/scitranslmed.aam7019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273. https://doi.org/10.1126/science.1223490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Broom LJ, Kogut MH (2018) The role of the gut microbiome in shaping the immune system of chickens. Vet Immunol Immunop 204:44–51. https://doi.org/10.1016/j.vetimm.2018.10.002

    Article  CAS  Google Scholar 

  28. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A 113:E7554–E7563. https://doi.org/10.1073/pnas.1607235113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biswas A, Mohan N, Raza M, Mir NA, Mandal A (2019) Production performance, immune response and blood biochemical parameters in broiler chickens fed diet incorporated with prebiotics. J Anim Physiol An N 103(2):493–500. https://doi.org/10.1111/jpn.13042

    Article  CAS  Google Scholar 

  30. Bai SP, Wu AM, Ding XM, Lei Y, Bai J, Zhang KY, Chio JS (2013) Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poult Sci 92:663–670. https://doi.org/10.3382/ps.2012-02813

    Article  CAS  PubMed  Google Scholar 

  31. Tong X, Rehman MU, Huang S, Jiang X, Zhang H, Li J (2018) Comparative analysis of gut microbial community in healthy and tibial dyschondroplasia affected chickens by high throughput sequencing. Microb Pathog 118:133–139. https://doi.org/10.1016/j.micpath.2018.03.001

    Article  PubMed  Google Scholar 

  32. Fuente R, Gil-Peña H, Claramunt-Taberner D, Hernández-Frías O, Fernández-Iglesias Á, Hermida-Prado F, Anes-González G, Rubio-Aliaga I, Lopez JM, Santos F (2018) Marked alterations in the structure, dynamics and maturation of growth plate likely explain growth retardation and bone deformities of young Hyp mice. Bone 116:187–195. https://doi.org/10.1016/j.bone.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  33. Pines M, Hurwitz S (1991) The role of the growth plate in longitudinal bone growth. Poult Sci 70:1806–1814. https://doi.org/10.3382/ps.0701806

    Article  CAS  PubMed  Google Scholar 

  34. Kishida Y, Hirao M, Tamai N, Nampei A, Fujimoto T, Nakase T, Shimizu N, Yoshikawa H, Myoui A (2005) Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification. Bone 37:607–621. https://doi.org/10.1016/j.bone.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  35. Edwards HJ, Veltmann JJ (1983) The role of calcium and phosphorus in the etiology of tibial dyschondroplasia in young chicks. J Nutr 113:1568–1575. https://doi.org/10.1093/jn/113.8.1568

    Article  CAS  PubMed  Google Scholar 

  36. Zhu YW, Wen J, Jiang XX, Wang WC, Yang L (2018) High calcium to phosphorus ratio impairs growth and bone mineralization in Pekin ducklings. Poult Sci 97:1163–1169. https://doi.org/10.3382/ps/pex401

    Article  CAS  PubMed  Google Scholar 

  37. Światkiewicz S, Koreleski J, Arczewska A (2010) Effect of organic acids and prebiotics on bone quality in laying hens fed diets with two levels of calcium and phosphorus. Acta Vet Brno 79:185–193. https://doi.org/10.2754/avb201079020185

    Article  CAS  Google Scholar 

  38. Hurwitz S, Bar A (1965) Absorption of calcium and phosphorus along the gastrointestinal tract of the laying fowl as influenced by dietary calcium and egg shell formation. J Nutr 86:433–438. https://doi.org/10.1093/jn/86.4.433

    Article  CAS  PubMed  Google Scholar 

  39. Gallagher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, DeLuca HF (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients: effect of age and dietary calcium. J Clin Invest 64:729–736. https://doi.org/10.1172/JCI109516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng H, Huang C, Lin S, Zheng M, Chen C, Zheng B, Zhang Y (2017) Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice. J Agr Food Chem 65:9217–9225. https://doi.org/10.1021/acs.jafc.7b02860

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Outstanding Talents of Henan Agricultural University (No. 30500421).

Author information

Authors and Affiliations

Authors

Contributions

X.W., Z.T., M.U.R., and S.H. conceived and designed the experiments; A.K., Q.C., K.T., and D.L. performed the experiments; F.L., A.K., P. F., M.U.R., and S.H. analyzed the data; F.L., A.K., P. F., and S.H. wrote the paper.

Corresponding author

Correspondence to Shu-cheng Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Kong, A., Fu, P. et al. Lactobacillus rhamnosus JYLR-005 Prevents Thiram-Induced Tibial Dyschondroplasia by Enhancing Bone-Related Growth Performance in Chickens. Probiotics & Antimicro. Prot. 13, 19–31 (2021). https://doi.org/10.1007/s12602-020-09670-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09670-7

Keywords

Navigation