Skip to main content

Advertisement

Log in

Lactobacillus brevis CD2: Fermentation Strategies and Extracellular Metabolites Characterization

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Functional foods and nutraceuticals frequently contain viable probiotic strains that, at certain titers, are considered to be responsible of beneficial effects on health. Recently, it was observed that secreted metabolites might play a key role in this respect, especially in immunomodulation. Exopolysaccharides produced by probiotics, for example, are used in the food, pharmaceutical, and biomedical fields, due to their unique properties. Lactobacillus brevis CD2 demonstrated the ability to inhibit oral pathogens causing mucositis and periodontal inflammation and to reduce Helycobacter pylori infections. Due to the lack of literature, for this strain, on the development of fermentation processes that can increase the titer of viable cells and associated metabolites to industrially attractive levels, different batch and fed-batch strategies were investigated in the present study. In particular, aeration was shown to improve the growth rate and the yields of lactic acid and biomass in batch cultures. The use of an exponential feeding profile in fed-batch experiments allowed to produce 9.3 ± 0.45 × 109 CFU/mL in 42 h of growth, corresponding to a 20-fold increase of viable cells compared with that obtained in aerated batch processes; moreover, also increased titers of exopolysaccharides and lactic acid (260 and 150%, respectively) were observed. A purification process based on ultrafiltration, charcoal treatment, and solvent precipitation was applied to partially purify secreted metabolites and separate them into two molecular weight fractions (above and below 10 kDa). Both fractions inhibited growth of the known gut pathogen, Salmonella typhimurium, demonstrating that lactic acid plays a major role in pathogen growth inhibition, which is however further enhanced by the presence of Lact. brevis CD2 exopolysaccharides. Finally, the EPS produced from Lact. brevis CD2 was characterized by NMR for the first time up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vesterlund S, Paltta J, Lauková A, Karp M, Ouwehand AC (2004) Rapid screening method for the detection of antimicrobial substances. J Microbiol Methods 57:23–31. https://doi.org/10.1016/j.mimet.2003.11.014

    Article  CAS  Google Scholar 

  2. Mahdhi A, Leban N, Chakroun I, Chaouch MA, Hafsa J, Fdhila K, Mahdouani K, Majdoub H (2017) Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microb Pathog 109:214–220. https://doi.org/10.1016/j.micpath.2017.05.046

    Article  CAS  Google Scholar 

  3. Tapan Kumar S (2012) Microbial extracellular polymeric substances: production, isolation and applications. Iosr-phr 2:276–281. https://doi.org/10.9790/3013-0220276281

    Article  Google Scholar 

  4. Schiraldi C, Valli V, Molinaro A, Cartenì M, De Rosa M (2006) Exopolysaccharides production in Lactobacillus bulgaricus and Lactobacillus casei exploiting microfiltration. J Ind Microbiol Biotechnol 33:384–390. https://doi.org/10.1007/s10295-005-0068-x

    Article  CAS  Google Scholar 

  5. Caggianiello G, Kleerebezem M, Spano G (2016) Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 100:3877–3886. https://doi.org/10.1007/s00253-016-7471-2

    Article  CAS  Google Scholar 

  6. Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P (2018) Probiotic properties of exopolysaccharide-producing Lactobacillus strains isolated from Tempoyak. Molecules. 23:1–20. https://doi.org/10.3390/molecules23020398

    Article  CAS  Google Scholar 

  7. Abid Y, Casillo A, Gharsallah H, Joulak I, Lanzetta R, Corsaro MM, Attia H, Azabou S (2019) Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int J Biol Macromol 108:719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155

    Article  CAS  Google Scholar 

  8. Rahbar Saadat Y, Yari Khosroushahi A, Pourghassem Gargari B (2019) A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217:79–89. https://doi.org/10.1016/j.carbpol.2019.04.025

    Article  CAS  Google Scholar 

  9. Toh ZQ, Anzela A, Tang ML, Licciardi PV (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3:171–184. https://doi.org/10.3389/fphar.2012.00171

    Article  CAS  Google Scholar 

  10. Sarowska J, Choroszy-Król I, Regulska-Ilow B, Frej-Mądrzak M, Jama-Kmiecik A (2013) The therapeutic effect of probiotic bacteria on gastrointestinal diseases. Adv Clin Exp Med 22:759–766

    Google Scholar 

  11. Scaldaferri F, Gerardi V, Lopetuso LR, Del Zompo F, Mangiola F, Boškoski I, Bruno G, Petito V, Laterza L, Cammarota G, Gaetani E, Sgambato A, Gasbarrini A (2013) Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed Res Int 435268:1–9. https://doi.org/10.1155/2013/435268

    Article  Google Scholar 

  12. Fang F, Xu J, Li Q, Xia X, Du G (2018) Characterization of a Lactobacillus brevis strain with potential oral probiotic properties. BMC Microbiol 18:221–229. https://doi.org/10.1186/s12866-018-1369-3

    Article  CAS  Google Scholar 

  13. Hosono A, Lee JW, Ametani A, Natsume M, Hirayama M, Adachi T, Kaminogawa S (1997) Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem 61:312–316. https://doi.org/10.1271/bbb.61.312

    Article  CAS  Google Scholar 

  14. Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Factories 9:85–91. https://doi.org/10.1186/1475-2859-9-85

    Article  CAS  Google Scholar 

  15. Karamese M, Aydin H, Sengul E, Gelen V, Sevim C, Ustek D, Karakus E (2016) The Immunostimulatory effect of lactic acid bacteria in a rat model. Iran J Immunol 13:220-228. IJIv13i3A7

  16. Kitazawa H, Toba T, Itoh T, Kumano N, Adachi S, Yamaguchi T (1991) Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp. cremoris isolated from scandinavian ropy sour milk, Viili. Anim Sci Technol 63:277–283. https://doi.org/10.3168/jds.S0022-0302(93)77483-4

    Article  Google Scholar 

  17. Riaz Rajoka MS, Zhao H, Mehwish HM, Li N, Lu Y, Lian Z, Shao D, Jin M, Li Q, Zhao L, Shi J (2019) Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk. Food Res Int 123:286–297. https://doi.org/10.1016/j.foodres.2019.05.002

    Article  CAS  Google Scholar 

  18. Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, Abdul Rahim R, Yusoff K (2019) Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med 19:114–125. https://doi.org/10.1186/s12906-019-2528-2

    Article  CAS  Google Scholar 

  19. Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A (2019) Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol 234:17127–17143. https://doi.org/10.1002/jcp.28473

    Article  CAS  Google Scholar 

  20. Nakajima H, Suzuki Y, Kaizu H (1992) Cholesterol lowering activity of ropy fermented milk. J Food Sci:1365–2621. https://doi.org/10.1111/j.1365-2621.1992.tb06848.x

  21. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40:169–175. 10.1016/s0168-1605(98)00030-0

  22. Freitas F, Alves VD, Paism J, Costa N, Oliveira C, Mafrac L, Hilliou L, Oliveira R, Reis MAM (2009) Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresour Technol 100:859–865. https://doi.org/10.1016/j.biortech.2008.07.002

    Article  CAS  Google Scholar 

  23. Shaofeng D, Tianwei T (2006) L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41:1451–1454. https://doi.org/10.1016/j.procbio.2006.01.014

    Article  CAS  Google Scholar 

  24. Oleksy-Sobczak M, Klewicka E (2019) Optimization of media composition to maximize the yield of exopolysaccharides production by Lactobacillus rhamnosus strains. Probiotics Antimicrob Proteins:1–10. https://doi.org/10.1007/s12602-019-09581-2

  25. Liu Q, Huang X, Yang D, Si T, Pan S, Yang F (2016) Yield improvement of exopolysaccharides by screening of the Lactobacillus acidophilus ATCC and optimization of the fermentation and extraction conditions. EXCLI J 15:119–133. https://doi.org/10.17179/excli2015-356

    Article  Google Scholar 

  26. Abdelazez A, Abdelmotaal H, Evivie SE, Melak S, Jia FF, Khoso MH, Zhu ZT, Zhang LJ, Sami R, Meng XC (2018) Screening potential probiotic characteristics of Lactobacillus brevis strains in vitro and intervention effect on type I diabetes in vivo. Biomed Res Int 2018:1–20. https://doi.org/10.1155/2018/7356173

    Article  CAS  Google Scholar 

  27. Suzuki S, Yakabe T, Suganuma H, Fukao M, Saito T, Yajima N (2013) Cell-bound exopolysaccharides of Lactobacillus brevis KB290: protective role and monosaccharide composition. Can J Microbiol 59:549–555. https://doi.org/10.1139/cjm-2013-0115

    Article  CAS  Google Scholar 

  28. Kishi A, Uno K, Matsubara Y, Okuda C, Kishida T (1996) Effect of the oral administration of Lactobacillus brevis subsp. coagulans on interferon-alpha producing capacity in humans. J Am Coll Nutr 15:408–412. https://doi.org/10.1080/07315724.1996.10718617

    Article  CAS  Google Scholar 

  29. Wu Q, Shah NP (2017) High γ-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Crit Rev Food Sci Nutr 57:3661–3672. https://doi.org/10.1080/10408398.2016.1147418

    Article  CAS  Google Scholar 

  30. Wu Q, Shap NP (2018) Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification. Food Microbiol 69:151–158. https://doi.org/10.1016/j.fm.2017.08.006

    Article  CAS  Google Scholar 

  31. Fukao M, Oshima K, Morita H, Toh H, Suda W, Kim SW, Suzuki S, Yakabe T, Hattori M, Yajima N (2013) Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS One 8(3):1–10. https://doi.org/10.1371/journal.pone.0060521

    Article  CAS  Google Scholar 

  32. Fukao M, Zendo T, Inoue T, Nakayama J, Suzuki S, Fukaya T, Yajima N, Sonomoto K (2019) Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, Lactobacillus brevis KB290. J Biosci Bioeng S1389-1723(19):30063–30065. https://doi.org/10.1016/j.jbiosc.2019.04.008

    Article  CAS  Google Scholar 

  33. Murakami K, Habukawa C, Nobuta Y, Moriguchi N, Takemura T (2012) The effect of Lactobacillus brevis KB290 against irritable bowel syndrome: a placebo controlled double-blind crossover trial. Biopsychosoc Med 6:16–23. https://doi.org/10.1186/1751-0759-6-16

    Article  Google Scholar 

  34. Fuke N, Aizawa K, Suganuma H, Takagi T, Naito Y (2017) Effect of combined consumption of Lactobacillus brevis KB290 and b-carotene on minor diarrhea-predominant irritable bowel syndrome-like symptoms in healthysubjects: a randomised, double-blind, placebo-controlled, parallel-group trial. Int J Food Sci Nutr 68:973–986. https://doi.org/10.1080/09637486.2017.1311843

    Article  CAS  Google Scholar 

  35. Waki N, Matsumono M, Fukui Y, Suganuma H (2014) Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among school children. Lett Appl Microbiol 59:565–571. https://doi.org/10.1111/lam.12340

    Article  CAS  Google Scholar 

  36. Sharma A, Tilak T, Bakhshi S, Raina V, Kumar L, Chaudhary SP, Sahoo RK, Gupta R, Thulkar S (2017) Lactobacillus brevis CD2 lozenges prevent oral mucositis in patients undergoing high dose chemotherapy followed by haematopoietic stem cell transplantation. SMO Open 1(6):e000138. https://doi.org/10.1136/esmoopen-2016-000138

    Article  Google Scholar 

  37. Linsalata M, Russo F, Berloco P, Caruso ML, Matteo GD, Cifone MG, Simone CD, Ierardi E, Di Leo A (2004) The influence of Lactobacillus brevis on ornithine decarboxylase activity and polyamine profiles in Helicobacter pylori-infected gastric mucosa. Helicobacter 9:165–172. https://doi.org/10.1111/j.1083-4389.2004.00214.x

    Article  CAS  Google Scholar 

  38. Riccia DN, Bizzini F, Perilli MG, Polimeni A, Trinchieri V, Amicosante G, Cifone MG (2007) Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis 13:376–378. https://doi.org/10.1111/j.1601-0825.2006.01291.x

    Article  Google Scholar 

  39. Shrikant AS, Parag SS, Ishwar BB, Rekha S (2007) Fermentative production, downstream processing and applications. Food Technol Biotechnol 45:107–118

    Google Scholar 

  40. Vuotto C, Barbanti F, Mastrantonio P, Donelli G (2014) Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis 20:668–674. https://doi.org/10.1111/odi.12186

    Article  CAS  Google Scholar 

  41. Cimini D, Restaino OF, Catapano A, De Rosa M, Schiraldi C (2010) Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications. Appl Microbiol Biotechnol 85:1779–1787. https://doi.org/10.1007/s00253-009-2261-8

    Article  CAS  Google Scholar 

  42. Scott TA, Melvin EH (1953) Determination of dextran with anthrone. Anal Chem 25:1656–1661. https://doi.org/10.1021/ac60083a023

    Article  CAS  Google Scholar 

  43. Restaino OF, Cimini D, Cassese E, Ventriglia R, Alfano A, Marrazzo A, D’ambrosio S, Barbuto Ferraiuolo S, De Rosa M, Schiraldi C (2019) Molecular weight determination of heparosan- and chondroitin-like capsular polysaccharides: figuring out differences between wild type and engineered Escherichia coli strains. Appl Microbiol Biotechnol 103:6771–6782. https://doi.org/10.1007/s00253-019-09969-8

    Article  CAS  Google Scholar 

  44. Petry S, Furlan S, Waghorne E, Saulnier L, Cerning L, Maguin E (2003) Comparison of the thickening properties of four Lactobacillus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides. FEMS Microbiol Lett 221:285–291. https://doi.org/10.1016/S0378-1097(03)00214-3

    Article  CAS  Google Scholar 

  45. Casillo A, Ståhle J, Parrilli E, Sannino F, Mitchell DE, Pieretti G, Lanetta R, Parrilli M, Widmalm G, Tutino ML, Corsaro MM (2017) Structural characterization of an all-amino sugar-containing capsular polysaccharide from Colwellia psychrerythraea 34H. Antonie Leeuwenhoek 110:1377–1387. https://doi.org/10.1007/s10482-017-0834-6

    Article  CAS  Google Scholar 

  46. Casillo A, Parrilli E, Sannino F, Mitchell DE, Gibson MI, Marino G, Lanzetta R, Parrilli M, Cosconati S, Novellino E, Randazzo A, Tutino ML, Corsaro MM (2017) Structure-activity relationship of the exopolysaccharide from a psychrophilic bacterium: a strategy for cryoprotection. Carbohydr Polym 156:364–371. https://doi.org/10.1016/j.carbpol.2016.09.037

    Article  CAS  Google Scholar 

  47. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  48. Valgas C, de Souza SM, Smânia EFA, Smânia A Jr (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380. https://doi.org/10.1590/S1517-83822007000200034

    Article  Google Scholar 

  49. Lindgren SW, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 87:149–164. https://doi.org/10.1111/j.1574-6968.1990.tb04885.x

    Article  CAS  Google Scholar 

  50. Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 119:10–18. https://doi.org/10.1016/j.jbiosc.2014.06.003

    Article  CAS  Google Scholar 

  51. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sc 7:222–229. https://doi.org/10.1016/j.jrras.2014.03.002

    Article  CAS  Google Scholar 

  52. Aguirre-Ezkauriatza EJ, Aguilar-Yáñez JM, Ramírez-Medrano A, Alvarez MM (2010) Production of probiotic biomass (Lactobacillus casei) in goat milk whey: comparison of batch, continuous and fed-batch cultures. Bioresour Technol 101:2837–2844. https://doi.org/10.1016/j.biortech.2009.10.047

    Article  CAS  Google Scholar 

  53. Juturu V, Wu JC (2018) Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv 36:2187–2200. https://doi.org/10.1016/j.biotechadv.2018.10.007

    Article  CAS  Google Scholar 

  54. Vivek N, Aswathi TV, Sven PR, Pandey A, Binod P (2017) Self-cycling fermentation for 1,3-propanediol production: comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain. J Biotechnol 259:110–119. https://doi.org/10.1016/j.jbiotec.2017.07.033

    Article  CAS  Google Scholar 

  55. Hasegawa M, Yamane D, Funato K, Yoshida A, Sambongi Y (2018) Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis. J Biosci Bioeng 125:316–319. https://doi.org/10.1016/j.jbiosc.2017.10.003

    Article  CAS  Google Scholar 

  56. Xie C, Coda R, Chamlagain B, Varmanen P, Piironen V, Katina K (2019) Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in wheat bran for in situ production of vitamin B12. Front Microbiol 10:1541–1551. https://doi.org/10.3389/fmicb.2019.01541

    Article  Google Scholar 

  57. Zhang Y, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng 119:694–699. https://doi.org/10.1016/j.jbiosc.2014.10.027

    Article  CAS  Google Scholar 

  58. Li CY, Lin HC, Lai CH, Lu JJ, Wu SF, Fang SH (2011) Immunomodulatory effects of Lactobacillus and Bifidobacterium on both murine and human mitogen-activated T cells. Int Arch Allergy Immunol 156:128–136. https://doi.org/10.1159/000322350

    Article  Google Scholar 

  59. Neveling DP, Endo A, Dicks LMT (2012) Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Curr Microbiol 65:507–515. https://doi.org/10.1007/s00284-012-0186-4

    Article  CAS  Google Scholar 

  60. Alfano A, Donnarumma G, Cimini D, Fusco A, Marzaioli I, De Rosa M, Schiraldi C (2015) Lactobacillus plantarum: microfiltration experiments for the production of probiotic biomass to be used in food and nutraceutical preparations. Biotechnol Prog 31:325–333. https://doi.org/10.1002/btpr.2037

    Article  CAS  Google Scholar 

  61. Schiraldi C, Adduci V, Valli V, Maresca C, Giuliano M, Lamberti M, Carteni M, De Rosa M (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol Bioeng 2003:213–222. https://doi.org/10.1002/bit.10557

    Article  CAS  Google Scholar 

  62. Schlothauer RC, Morgan AJ, Rademacher I, Christensen T, Martel I (2004) Use of lactobacillus to produce exopolysaccharides in food and pharmaceutical compositions WO2004013343 (A2)

  63. Sun Kang T, Korber DR, Tanaka T (2013) Regulation of dual glycolytic pathways for fructose metabolism in heterofermentative Lactobacillus panis PM1. Appl Environ Microbiol 79:7818–7826. https://doi.org/10.1128/AEM.02377-13

    Article  CAS  Google Scholar 

  64. Guo T, Zhang L, Xin Y, Xu Z, He H, Kong J (2017) Oxygen-inducible conversion of lactate to acetate in heterofermentative Lactobacillus brevis ATCC 367. Appl Environ Microbiol 17:83–104. https://doi.org/10.1128/AEM.01659-17

    Article  Google Scholar 

  65. Brooijmans R, Smit B, Santos F, Riel JV, deVos WM, Hugenholtz J (2009) Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Factories 8:28–38. https://doi.org/10.1186/1475-2859-8-28

    Article  CAS  Google Scholar 

  66. Callewaert R, De Vuyst L (2000) Bacteriocin production with Lactobacillus amylovorus DCE471 is improved and stabilized by fed-batch fermentation. Appl Environ Microbiol 66:606–613

    Article  CAS  Google Scholar 

  67. Castro LP, Bernardez PF, Guerra NP, Guseva EV, Fick M (2007) Fed-batch pediocin production on whey using different feeding media. Enzym Microb Technol 41:397–406

    Article  Google Scholar 

  68. Racine FM, Saha BC (2007) Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem 42:1609–1613

    Article  CAS  Google Scholar 

  69. Polak-Bereckaa M, Waśko A, Skrzypekb H, Kreftc A (2013) Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment 42:220–228. https://doi.org/10.1556/AAlim.42.2013.2.9

    Article  CAS  Google Scholar 

  70. Bajaj BI, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354

    CAS  Google Scholar 

  71. Freitas F, Alves VD, Reis AM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. https://doi.org/10.1016/j.tibtech.2011.03.008

    Article  CAS  Google Scholar 

  72. Maekawa T, Hajishengallis G (2014) Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. Periodontal Res 49:785–791. https://doi.org/10.1111/jre.12164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Enrico Maria Cacciapuoti for fruitful discussions on fermentation and downstream processing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Schiraldi or Donatella Cimini.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Bioteknet s.p.a. is a public body of which the L. Vanvitelli University is the majority shareholder.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfano, A., Perillo, F., Fusco, A. et al. Lactobacillus brevis CD2: Fermentation Strategies and Extracellular Metabolites Characterization. Probiotics & Antimicro. Prot. 12, 1542–1554 (2020). https://doi.org/10.1007/s12602-020-09651-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09651-w

Keywords

Navigation