Skip to main content

Advertisement

Log in

Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of d-Galactose-Induced Aging Rats Fed with High-Fat Diet

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Both aging and diet play an important role in influencing the gut ecosystem. Using premature senescent rats induced by d-galactose and fed with high-fat diet, this study aims to investigate the effects of different potential probiotic strains on the dynamic changes of fecal microbiome and metabolites. In this study, male Sprague–Dawley rats were fed with high-fat diet and injected with d-galactose for 12 weeks to induce aging. The effect of Lactobacillus plantarum DR7, L. fermentum DR9, and L. reuteri 8513d administration on the fecal microbiota profile, short-chain fatty acids, and water-soluble compounds were analyzed. It was found that the administration of the selected strains altered the gut microbiota diversity and composition, even at the phylum level. The fecal short-chain fatty acid content was also higher in groups that were administered with the potential probiotic strains. Analysis of the fecal water-soluble metabolites revealed that administration of L. plantarum DR7 and L. reuteri 8513d led to higher fecal content of compounds related to amino acid metabolism such as tryptophan, leucine, tyrosine, cysteine, methionine, valine, and lysine; while administration of L. fermentum DR9 led to higher prevalence of compounds related to carbohydrate metabolism such as erythritol, xylitol, and arabitol. In conclusion, it was observed that different strains of lactobacilli can cause difference alteration in the gut microbiota and the metabolites, suggesting the urgency to explore the specific metabolic impact of specific strains on the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Murphy EA, Velazquez KT, Herbert KM (2015) Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 18(5):515–520. https://doi.org/10.1097/MCO.0000000000000209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaiserman AM, Koliada AK, Marotta F (2017) Gut microbiota: a player in aging and a target for anti-aging intervention. Aging Res Rev 35:36–45. https://doi.org/10.1016/j.arr.2017.01.001

    Article  CAS  Google Scholar 

  3. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3(1):4–14. https://doi.org/10.4161/gmic.19320

    Article  PubMed  PubMed Central  Google Scholar 

  4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558. https://doi.org/10.2174/138161209788168164

    Article  CAS  PubMed  Google Scholar 

  6. Yang JY, Kweon MN (2016) The gut microbiota: a key regulator of metabolic diseases. BMB Rep 49(10):536–541. https://doi.org/10.5483/BMBRep.2016.49.10.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Amelio P, Sassi F (2018) Gut microbiota, immune system, and bone. Calcif Tissue Int 102(4):415–425. https://doi.org/10.1007/s00223-017-0331-y

    Article  CAS  PubMed  Google Scholar 

  8. Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S (2017) Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract 7(4):987. https://doi.org/10.4081/cp.2017.987

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8(1):42. https://doi.org/10.1186/s13073-016-0303-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanders ME (2016) Probiotics and microbiota composition. BMC Med 14(1):82. https://doi.org/10.1186/s12916-016-0629-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lye HS, Kato T, Low WY, Taylor TD, Prakash T, Lew LC, Ohno H, Liong MT (2017) Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. J Biotechnol 262:75–83. https://doi.org/10.1016/j.jbiotec.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Song X, Bao M, Li D, Li YM (1999) Advanced glycation in D-galactose-induced mouse aging model. Mech Ageing Dev 108(3):239–251. https://doi.org/10.1016/S0047-6374(99)00022-6

    Article  CAS  PubMed  Google Scholar 

  13. Tsugawa H, Bamba T, Shinohara M, Nishiumi S, Yoshida M, Fukusaki E (2011) Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J Biosci Bioeng 112(3):292–298. https://doi.org/10.1016/j.jbiosc.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Nakajima A, Kaga N, Nakanishi Y, Ohno H, Miyamoto J, Kimura I, Hori S, Sasaki T, Hiramatsu K, Okumura K, Miyake S, Habu S, Watanabe S (2017) Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J Immunol 199(10):3516–3524. https://doi.org/10.4049/jimmunol.1700248

    Article  CAS  PubMed  Google Scholar 

  15. Kato T, Fukuda S, Fujiwara A, Suda W, Hattori M, Kikuchi J, Ohno H (2014) Multiple omics uncovers host-gut microbial mutualism during prebiotic fructooligosaccharide supplementation. DNA Res 21(5):469–480. https://doi.org/10.1093/dnares/dsu013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyoshi J, Chang EB (2017) The gut microbiota and inflammatory bowel diseases. Transl Res 179:38–48. https://doi.org/10.1016/j.trsl.2016.06.002

    Article  PubMed  Google Scholar 

  17. Rebolledo C, Cuevas A, Zambrano T, Acuna JJ, Jorquera MA, Saavedra K, Martinez C, Lanas F, Seron P, Salazar LA, Saavedra N (2017) Bacterial community profile of the gut microbiota differs between hypercholesterolemic subjects and controls. Biomed Res Int 2017:8127814. https://doi.org/10.1155/2017/8127814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blandino G, Inturri R, Lazzara F, Di Rosa M, Malaguarnera L (2016) Impact of gut microbiota on diabetes mellitus. Diabetes Metab 42(5):303–315. https://doi.org/10.1016/j.diabet.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Parashar A, Udayabanu M (2017) Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7. https://doi.org/10.1016/j.parkreldis.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537. https://doi.org/10.1038/s41598-017-13,601-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215. https://doi.org/10.1126/science.aac8469

    Article  CAS  PubMed  Google Scholar 

  22. Lew LC, Choi SB, Khoo BY, Sreenivasan S, Ong KL, Liong MT (2018) Lactobacillus plantarum DR7 reduces cholesterol via phosphorylation of AMPK that down-regulated the mRNA expression of HMG-CoA reductase. Food Sci Anim Resour 38(2):350–361. https://doi.org/10.5851/kosfa.2018.38.2.350

    Article  Google Scholar 

  23. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16:90. https://doi.org/10.1186/s12866-016-0708-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. https://doi.org/10.1186/1471-2180-9-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho SY, Kim J, Lee JH, Sim JH, Cho DH, Bae IH, Lee H, Seol MA, Shin HM, Kim TJ, Kim DY, Lee SH, Shin SS, Lm SH, Kim HR (2016) Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Sci Rep 6:39026. https://doi.org/10.1038/srep39026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, Calignano A, Khan AA, Gilbert JA, Nagler CR (2016) Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J 10(3):742–750. https://doi.org/10.1038/ismej.2015.151

    Article  CAS  PubMed  Google Scholar 

  27. Kwok LY, Guo Z, Zhang J, Wang L, Qiao J, Hou Q, Zheng Y, Zhang H (2015) The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Benefic Microbes 6(4):405–413. https://doi.org/10.3920/BM2014.0063

    Article  CAS  Google Scholar 

  28. Neyrinck AM, Pachikian B, Taminiau B, Daube G, Frederick R, Cani PD, Bindels LB, Delzenne NM (2016) Intestinal sucrase as a novel target contributing to the regulation of glycemia by prebiotics. PLoS One 11(8):e0160488. https://doi.org/10.1371/journal.pone.0160488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang L, Zhang J, Guo Z, Kwok L, Ma C, Zhang W, Lv Q, Huang W, Zhang H (2014) Effect of oral consumption of probiotic Lactobacillus plantarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition 30(7–8):776–783 e771. https://doi.org/10.1016/j.nut.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  30. Park SK, Kim MS, Roh SW, Bae JW (2012) Blautia stercoris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 62(Pt 4):776–779. https://doi.org/10.1099/ijs.0.031625-0

    Article  CAS  PubMed  Google Scholar 

  31. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131. https://doi.org/10.1038/nrmicro1817

    Article  CAS  PubMed  Google Scholar 

  32. Ohira H, Tsutsui W, Fujioka Y (2017) Are short-chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24(7):660–672. https://doi.org/10.5551/jat.RV17006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1801(11):1175–1183. https://doi.org/10.1016/j.bbalip.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  34. Payne AN, Chassard C, Lacroix C (2012) Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev 13(9):799–809. https://doi.org/10.1111/j.1467-789X.2012.01009.x

    Article  CAS  PubMed  Google Scholar 

  35. Conterno L, Fava F, Viola R, Tuohy KM (2011) Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 6(3):241–260. https://doi.org/10.1007/s12263-011-0230-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rios-Covian D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilan CG, Salazar N (2016) Intestinal short-chain fatty acids and their link with diet and human health. Front Microbiol 7:185. https://doi.org/10.3389/fmicb.2016.00185

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547. https://doi.org/10.1038/nature09646

    Article  CAS  PubMed  Google Scholar 

  38. Elamin EE, Masclee AA, Dekker J, Pieters HJ, Jonkers DM (2013) Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers. J Nutr 143(12):1872–1881. https://doi.org/10.3945/jn.113.179549

    Article  CAS  PubMed  Google Scholar 

  39. Shi X, Wei X, Yin X, Wang Y, Zhang M, Zhao C, Zhao H, McClain CJ, Feng W, Zhang X (2015) Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice. J Proteome Res 14(2):1174–1182. https://doi.org/10.1021/pr501121c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin R, Liu W, Piao M, Zhu H (2017) A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49(12):2083–2090. https://doi.org/10.1007/s00726-017-2493-3

    Article  CAS  PubMed  Google Scholar 

  41. Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, Backhed F, Nielsen J (2015) The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol 11(10):834. https://doi.org/10.15252/msb.20156487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M (2017) The role of the microbial metabolites including tryptophan catabolites and short-chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol 54(6):4432–4451. https://doi.org/10.1007/s12035-016-0004-2

    Article  CAS  PubMed  Google Scholar 

  43. Lim CK, Essa MM, de Paula Martins R, Lovejoy DB, Bilgin AA, Waly MI, Al-Farsi YM, Al-Sharbati M, Al-Shaffae MA, Guillemin GJ (2016) Altered kynurenine pathway metabolism in autism: implication for immune-induced glutamatergic activity. Autism Res 9(6):621–631. https://doi.org/10.1002/aur.1565

    Article  PubMed  Google Scholar 

  44. Jenkins TA, Nguyen JC, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8(1). https://doi.org/10.3390/nu8010056

  45. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106(14):5859–5864. https://doi.org/10.1073/pnas.0901529106

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rzechonek DA, Dobrowolski A, Rymowicz W, Mironczuk AM (2018) Recent advances in biological production of erythritol. Crit Rev Biotechnol 38(4):620–633. https://doi.org/10.1080/07388551.2017.1380598

    Article  CAS  PubMed  Google Scholar 

  47. Lopez de Felipe F, de Las Rivas B, Munoz R (2014) Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development. Front Microbiol 5:684. https://doi.org/10.3389/fmicb.2014.00684

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the URICAS grant (1001/PTEKIND/870030) provided by Universiti Sains Malaysia, MyBrain15-MyPhD from Ministry of Higher Education (MOHE), and funding by Clinical Nutrition Intl (M) Sdn. Bhd.

Author information

Authors and Affiliations

Authors

Contributions

LCL and MTL conceived and designed the experiments. LCL, YYH, MHJ, and ASYL performed the study. LCL analyzed the data. KBY, SBC, SS, TK, and HO provided psychological and experimental advice and services. LCL and MTL drafted the work, critically revised for intellectual content. LCL wrote the manuscript.

Corresponding authors

Correspondence to Hiroshi Ohno or Min-Tze Liong.

Ethics declarations

All animal experiments were approved by the USM Animal Care and Use Committee (USM/Animal Ethics Approval/2016/(724)) and were carried out under GLP condition and facility (Animal Research and Service Centre, USM Advanced Medical and Dental Institute) according to the National Institutes of Health (NIH) Public Health Service Policy.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lew, LC., Hor, YY., Jaafar, MH. et al. Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of d-Galactose-Induced Aging Rats Fed with High-Fat Diet. Probiotics & Antimicro. Prot. 12, 545–562 (2020). https://doi.org/10.1007/s12602-019-09545-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09545-6

Keywords

Navigation