Skip to main content

Advertisement

Log in

In Vitro Antimicrobial Activity and Downregulation of Virulence Gene Expression on Helicobacter pylori by Reuterin

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Helicobacter pylori is an infectious agent commonly associated with gastrointestinal diseases. The use of probiotics to treat this infection has been documented, however, their potential antimicrobial metabolites have not yet been investigated. In the present study, the effect of reuterin produced by Lactobacillus reuteri on H. pylori growth and virulence gene expression was evaluated. It was observed that reuterin caused significant (P < 0.05) H. pylori growth inhibition at concentrations from 0.08 to 20.48 mM, with minimal inhibitory concentrations (MICs) of 20.48 mM for H. pylori ATCC700824 and 10.24 mM for H. pylori ATCC43504. In a reuterin bacterial killing assay, it was observed that half of the MIC value for H. pylori (ATCC700824) significantly (P < 0.01) reduced colony numbers from 5.65 ± 0.35 to 3.78 ± 0.35 Log10 CFU/mL after 12 h of treatment and then increased them to 5.25 ± 0.23 Log10 CFU/mL at 24 h; at its MIC value (20.48 mM), reuterin abrogated (P < 0.01) H. pylori (ATCC700824) growth after 20 h of culture. In addition, reuterin significantly (P < 0.01) reduced H. pylori (ATCC 43504) colony numbers from 5.65 ± 0.35 to 4.1 ± 0.12 Log10 CFU/mL from 12 to 24 h of treatment and abrogated its growth at its MIC value (10.24 mM), after 20 h of treatment. Reuterin did not alter normal human gastric Hs738.St/Int cell viability at the concentrations tested for H. pylori strains. Furthermore, 10 μM reuterin was shown to significantly (P < 0.01) reduce mRNA relative expression levels of H. pylori virulence genes vacA and flaA at 3 h post-treatment, whose effect was higher at 6 h post-treatment, as measured by RT-qPCR. The observed direct antimicrobial effect and the downregulation of expression of virulence genes on H. pylori by reuterin may contribute to the understanding of the mechanisms of action of probiotics against H. pylori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1(8390):1311–1315. https://doi.org/10.1016/S0140-6736(84)91816-6

    Article  CAS  PubMed  Google Scholar 

  2. Kusters JG, Van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19(3):449–490. https://doi.org/10.1128/CMR.00054-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. International Agency for Research on Cancer (1994) Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum 61:1–241

    Google Scholar 

  4. Amieva MR, El-Omar EM (2008) Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134(1):306–323. https://doi.org/10.1053/j.gastro.2007.11.009

    Article  CAS  PubMed  Google Scholar 

  5. Wroblewski LE, Peek RM Jr, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23(4):713–739. https://doi.org/10.1128/CMR.00011-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiarini A, Cala C, Bonura C, Gullo A, Giuliana G, Peralta S, D'Arpa F, Giammanco A (2009) Prevalence of virulence-associated genotypes of Helicobacter pylori and correlation with severity of gastric pathology in patients from western Sicily, Italy. Eur J Clin Microbiol Infect Dis 28(5):437–446. https://doi.org/10.1007/s10096-008-0644-x

    Article  CAS  PubMed  Google Scholar 

  7. Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ, European Helicobacter Study G (2012) Management of Helicobacter pylori infection—the Maastricht IV/ Florence Consensus Report. Gut 61(5):646–664. https://doi.org/10.1136/gutjnl-2012-302084

    Article  CAS  PubMed  Google Scholar 

  8. Thung I, Aramin H, Vavinskaya V, Gupta S, Park JY, Crowe SE, Valasek MA (2016) Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment Pharmacol Ther 43(4):514–533. https://doi.org/10.1111/apt.13497

    Article  CAS  PubMed  Google Scholar 

  9. Casas IA, Dobrogosz WJ (2000) Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb Ecol Health Dis 12(4):247–285. https://doi.org/10.3402/mehd.v12i4.8196

    Article  Google Scholar 

  10. Francavilla R, Lionetti E, Castellaneta SP, Magista AM, Maurogiovanni G, Bucci N, De Canio A, Indrio F, Cavallo L, Ierardi E, Miniello VL (2008) Inhibition of Helicobacter pylori infection in humans by Lactobacillus reuteri ATCC 55730 and effect on eradication therapy: a pilot study. Helicobacter 13(2):127–134. https://doi.org/10.1111/j.1523-5378.2008.00593.x

    Article  PubMed  Google Scholar 

  11. Francavilla R, Polimeno L, Demichina A, Maurogiovanni G, Principi B, Scaccianoce G, Ierardi E, Russo F, Riezzo G, Di Leo A, Cavallo L, Francavilla A, Versalovic J (2014) Lactobacillus reuteri strain combination in Helicobacter pylori infection: a randomized, double-blind, placebo-controlled study. J Clin Gastroenterol 48(5):407–413. https://doi.org/10.1097/MCG.0000000000000007

    Article  PubMed  Google Scholar 

  12. Dore MP, Soro S, Rocchi C, Loria MF, Bibbo S, Pes GM (2016) Inclusion of Lactobacillus reuteri in the treatment of Helicobacter pylori in Sardinian patients. Medicine 95(15):1–3. https://doi.org/10.1097/MD.0000000000003411

    Article  Google Scholar 

  13. Thomas DW, Greer FR, American Academy of Pediatrics Committee on Nutrition, American Academy of Pediatrics Section on Gastroenterology, Hepatology, and Nutrition (2010) Probiotics and prebiotics in pediatrics. Pediatrics 126(6):1217–1231. https://doi.org/10.1542/peds.2010-2548

    Article  PubMed  Google Scholar 

  14. Vollenweider S, Grassi G, Konig I, Puhan Z (2003) Purification and structural characterization of 3-hydroxypropionaldehyde and its derivatives. J Agric Food Chem 51(11):3287–3293. https://doi.org/10.1021/jf021086d

    Article  CAS  PubMed  Google Scholar 

  15. Talarico TL, Casas IA, Chung TC, Dobrogosz WJ (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32(12):1854–1858. https://doi.org/10.1128/AAC.32.12.1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Talarico TL, Dobrogosz WJ (1989) Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother 33(5):674–679. https://doi.org/10.1128/AAC.33.5.674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G (2007) Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol 7(1):101. https://doi.org/10.1186/1471-2180-7-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64(1):16–27. https://doi.org/10.1007/s00253-003-1497-y

    Article  CAS  PubMed  Google Scholar 

  19. Ganzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64(3):326–332. https://doi.org/10.1007/s00253-003-1536-8

    Article  CAS  PubMed  Google Scholar 

  20. Delgado S, Leite AM, Ruas-Madiedo P, Mayo B (2014) Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis. Front Microbiol 5:766. https://doi.org/10.3389/fmicb.2014.00766

    Article  PubMed  Google Scholar 

  21. Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci U S A 108(8):3360–3365. https://doi.org/10.1073/pnas.1017431108

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salehi R, Savabi O, Kazemi M, Kamali S, Salehi AR, Eslami G, Tahmourespour A (2014) Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf) of Streptococcus mutans. Adv Biomed Res 3:169. https://doi.org/10.4103/2277-9175.139134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ryan KA, O’Hara AM, van Pijkeren JP, Douillard FP, O’Toole PW (2009) Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol 58(Pt 8):996–1005. https://doi.org/10.1099/jmm.0.009407-0

    Article  CAS  PubMed  Google Scholar 

  24. Baca-Castanon ML, De la Garza-Ramos MA, Alcazar-Pizana AG, Grondin Y, Coronado-Mendoza A, Sanchez-Najera RI, Cardenas-Estrada E, Medina-De la Garza CE, Escamilla-Garcia E (2015) Antimicrobial effect of Lactobacillus reuteri on cariogenic bacteria Streptococcus gordonii, Streptococcus mutans, and periodontal diseases Actinomyces naeslundii and Tannerella forsythia. Probiotics Antimicrob Proteins 7(1):1–8. https://doi.org/10.1007/s12602-014-9178-y

    Article  PubMed  Google Scholar 

  25. Circle SJ, Stone L, Boruff CS (1945) Acrolein determination by means of tryptophane. A colorimetric micromethod. Ind Eng Chem Anal Ed 17(4):259–262. https://doi.org/10.1021/i560140a021

    Article  CAS  Google Scholar 

  26. Rütti DP, Lacroix C, Jeremiç T, Mathis M, Díe A, Vollenweider S (2011) Development of a reversible binding process for in situ removal of 3-hydroxypropionaldehyde during biotechnological conversion of glycerol. Biochem Eng J 55(3):176–184. https://doi.org/10.1016/j.bej.2011.04.005

    Article  CAS  Google Scholar 

  27. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicron Chemother 48(Suppl 1):5–16. https://doi.org/10.1093/jac/dkf083

    Article  CAS  Google Scholar 

  28. CLSI (2015) Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement. CLSI document M100-S25. Committee for Clinical Laboratory Standards, Wayne, PA, 35(3):1–236

  29. Koeth LM (2016) Tests to assess bactericidal activity. Clinical Microbiology Procedures Handbook, vol 2. ASM press, Washington, DC, pp 950–978 ISBN: 9781555818807

    Google Scholar 

  30. Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM (1999) Methods for determining bactericidal activity of antimicrobial agents: approved guideline. NCCLS document M26-A 19(18):1–31 ISBN: 1-56238-384-1

    Google Scholar 

  31. Tong JL, Ran ZH, Shen J, Zhang CX, Xiao SD (2007) Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy. Aliment Pharmacolo Ther 25(2):155–168. https://doi.org/10.1111/j.1365-2036.2006.03179.x

    Article  CAS  Google Scholar 

  32. Arqués JL, Fernández J, Gaya P, Nuñez M, Rodrı́guez E, Medina M (2004) Antimicrobial activity of reuterin in combination with nisin against food-borne pathogens. Int J Food Microbiol 95(2):225–229. https://doi.org/10.1016/j.ijfoodmicro.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  33. El-Ziney MG, van den Tempel T, Debevere J, Jakobsen M (1999) Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J Food Protect 62(3):257–261. https://doi.org/10.4315/0362-028X-62.3.257

    Article  CAS  Google Scholar 

  34. Chung TC, Axelsson L, Lindgren SE, Dobrogosz WJ (1989) In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microb Ecol Health Dis 2(2):137–144. https://doi.org/10.3109/08910608909140211

  35. Liang HF, Chen CN, Chang Y, Sung HW (2003) Natural antimicrobial agent (reuterin) produced by Lactobacillus reuteri for sanitization of biological tissues inoculated with Pseudomonas aeruginosa. Biotechnol Bioeng 84(2):233–239. https://doi.org/10.1002/bit.10764

    Article  CAS  PubMed  Google Scholar 

  36. El-Ziney MG, Debevere JM (1998) The effect of reuterin on Listeria monocytogenes and Escherichia coli O157:H7 in milk and cottage cheese. J Food Protect 61(10):1275–1280. https://doi.org/10.4315/0362-028X-61.10.1275

    Article  CAS  Google Scholar 

  37. Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J (2008) Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe 14(3):166–171. https://doi.org/10.1016/j.anaerobe.2008.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laughton JM, Devillard E, Heinrichs DE, Reid G, McCormick JK (2006) Inhibition of expression of a staphylococcal superantigen-like protein by a soluble factor from Lactobacillus reuteri. Microbiology 152(Pt 4):1155–1167. https://doi.org/10.1099/mic.0.28654-0

    Article  CAS  PubMed  Google Scholar 

  39. Eaton KA, Suerbaum S, Josenhans C, Krakowka S (1996) Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64(7):2445–2448

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rader BA, Campagna SR, Semmelhack MF, Bassler BL, Guillemin K (2007) The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori. J Bacteriol 189(17):6109–6117. https://doi.org/10.1128/JB.00246-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dobrogosz WJ, Lindgren SE (1988) Antibiotic Reuterin. Patent EP0357673A1, PCT/US1988/001423. https://patentscope.wipo.int/search/docservicepdf_pct/id00000000827490/PAMPH/WO1988008452.pdf

  42. Schauenstein E, Esterbauer H, Zollner H (1977) Saturated aldehydes. Aldehydes in biological systems: their natural occurrence and biological activities, vol 5. Pion, London, pp 9–24 ISBN: 0850860598

    Google Scholar 

  43. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O’Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15(3):151–161. https://doi.org/10.1093/dnares/dsn009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Laboratorio de Inmunología y Virología of Facultad de Ciencias Biológicas at Universidad Autónoma de Nuevo León for supporting the development of this study.

Funding

This study was partly supported by grants from Programa de Apoyo a la Investigación Científica y Tecnológica from Universidad Autónoma de Nuevo León (PAICYT-UANL) to RGF and by Consejo Nacional de Ciencia y Tecnología (CONACYT-México) to VUB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gomez-Flores.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urrutia-Baca, V.H., Escamilla-García, E., de la Garza-Ramos, M.A. et al. In Vitro Antimicrobial Activity and Downregulation of Virulence Gene Expression on Helicobacter pylori by Reuterin. Probiotics & Antimicro. Prot. 10, 168–175 (2018). https://doi.org/10.1007/s12602-017-9342-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9342-2

Keywords

Navigation