Skip to main content

Advertisement

Log in

Characterization of Intestinal Lactobacillus reuteri Strains as Potential Probiotics

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

This study was conducted to evaluate the probiotic properties of Lactobacillus reuteri isolated from human infant feces (less than 3 months). Out of thirty-two representative L. reuteri strains isolated from the infant human feces, nine isolates (i.e. LR5, LR6, LR9, LR11, LR19, LR20, LR25, LR26 and LR34) showed survival in acid, bile and simulated stomach–duodenum passage conditions, indicating their high tolerance to gastric juice, duodenal juice and bile environments. The nine isolates did not show strong hydrophobic properties because the percentages of adhesion to the apolar solvent, n-hexadecane, did not exceed 40%, showing that their surfaces were rather hydrophilic. Functionality of these nine probiotic isolates was supported by their antagonistic activity and their ability to deconjugate bile salts. The safety of the nine indigenous L. reuteri isolates was supported by the absence of transferable antibiotic resistance determinants, DNase activity, gelatinase activity and hemolysis. The results obtained so far suggest that the nine strains are resistant to low pH, bile salts and duodenum juice, so they could survive when passing through the upper part of the gastrointestinal tract and fulfill their potential probiotic action in the host organism. According to these results, the L. reuteri strains isolated from human infant feces possess interesting probiotic properties that make them potentially good candidates for probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrahamsson TR, Jakobsson T, Bottcher MF, Fredrikson M, Jenmalm MC, Bjorksten B, Oldaeus G (2007) Probiotics in prevention of IgE-associated eczema: a double blind randomized placebo-controlled trial. J Allergy Clin Immunol 119:1174–1180

    Article  CAS  Google Scholar 

  2. Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73:399S–405S

    CAS  Google Scholar 

  3. Biswas SR, Ray P, Johnson MC, Ray B (1991) Influence of growth conditions on the production of a bacteriocin AcH by Pediococcus acidilactici H. Appl Environ Microbiol 5:1265–1267

    Google Scholar 

  4. Bogovic Matijasic B, Rogelj I (2000) Lactobacillus K7—a new candidate for a probiotic strain. Food Technol Biotechnol 38(2):113–119

    Google Scholar 

  5. Carey CM, Kostrzynska M, Ojha S, Thompson S (2008) The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods 73:125–132

    Article  CAS  Google Scholar 

  6. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vivo methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  Google Scholar 

  7. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Ingredient selection criteria for probiotic microorganisms in functional dairy foods. Int J Dairy Technol 51(4):123–136

    Article  CAS  Google Scholar 

  8. Charteris WP, Kelly PM, Morelli L, Collins JK (2001) Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J Food Prot 64:2007–2014

    CAS  Google Scholar 

  9. Chou L, Weimer B (1999) Isolation and characterization of acid and bile-tolerant isolates from strains of Lactobacillus acidophilus. J Dairy Sci 82:23–31

    Article  CAS  Google Scholar 

  10. Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168:171–178

    CAS  Google Scholar 

  11. Clark PA, Cotton LN, Martin JH (1997) Selection of Bifidobacteria for use as delivery adjuncts in cultured dairy foods. II. Tolerance to stimulated pH of human stomachs. J Cultured Dairy Prod 28(4):11–14

    Google Scholar 

  12. Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G (2007) Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol 7:101

    Article  Google Scholar 

  13. Clinical and Laboratory Standards Institute (CLSI) (2009) In: Jeffrey L, Thomas R, Michael Apley, Donald J, Steven D et al. (eds) Performance standards for antimicrobial disk susceptibility tests, vol 28(8). pp 13–23

  14. Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70:1–12

    Article  CAS  Google Scholar 

  15. Corzo G, Gilliland SE (1999) Measurements of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J Dairy Sci 82:466–471

    Article  CAS  Google Scholar 

  16. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11

    Article  CAS  Google Scholar 

  17. De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of Lactobacilli. J Appl Microbiol 23(l):130–135

    Google Scholar 

  18. De Smet I, Van Hoorde L, Vande Woestyne M, Cristianes H, Verstraete W (1995) Significance of bile salt hydrolytic activities of Lactobacilli. J Appl Bacteriol 79:292–301

    Article  Google Scholar 

  19. Dubernet S, Desmasures N, Guéguen M (2002) A PCR-based method for identification of Lactobacilli at the genus level. FEMS Microbiol Lett 214:271–275

    Article  CAS  Google Scholar 

  20. Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EM, O’Sullivan GC, Shanahan F, Collins JK (1999) Probiotics: from myth to reality. Demonstration of functionality on animal models of disease and in human clinical trials. Anton Leeuwen 76:279–292

    Article  CAS  Google Scholar 

  21. Dunne C, O’Mahony L, Murphy L, Thornton G, Morrisey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386S–392S

    CAS  Google Scholar 

  22. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina

  23. FAO/WHO (2002) Joint FAO/WHO working group meeting report on drafting guidelines for the evaluation of probiotics in food, London Ontario, Canada, pp 1–28

  24. Fernandez MF, Boris S, Barbes C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    Article  CAS  Google Scholar 

  25. Fleming HP, Etchells JL, Costilow RN (1975) Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl Microbiol 30:1040–1042

    CAS  Google Scholar 

  26. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  Google Scholar 

  27. Fuller R (1992) History and development of probiotics. In: Fuller R (ed) Probiotics. Chapman and Hall, Cambridge, pp 1–8

    Chapter  Google Scholar 

  28. Garg KB, Ganguli I, Das R, Talwar GP (2009) Spectrum of Lactobacillus species present in healthy vagina of Indian women. Indian J Med Res 29:652–657

    Google Scholar 

  29. Gilliland SE, Staley TE, Bush LJ (1984) Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjuct. J Dairy Sci 67:3045–3055

    Article  CAS  Google Scholar 

  30. Gilliland SE, Walker DK (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J Dairy Sci 73:905–911

    Article  CAS  Google Scholar 

  31. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gaulthierri L, Salminer S (1992) Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37:121–128

    Article  CAS  Google Scholar 

  32. Gupta H, Malik RK (2007) Incidence of virulence in bacteriocin producing enterococcal isolates. Lait 87:587–601

    Article  CAS  Google Scholar 

  33. Haung Y, Adams MC (2004) In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int J Food Microbiol 91:253–260

    Article  Google Scholar 

  34. Hoffman AF, Molino G, Milanese M, Belforte G (1983) Description and stimulation of a physiological pharmokinetic model for the metabolism and enterohepatic circulation of bile acids in man. J Clin Invest 71:1003–1025

    Article  Google Scholar 

  35. Hofmann A (1991) Enterohepatic circulation of bile acids. In: Schultz SG, Forte JG, Rauner BB (eds) Handbook of physiology. Section 6: the gastrointestinal system, salivary, gastric, pancreatic, and hepatobiliary secretion, vol 3, pp 567–580

  36. Imase K, Tanaka A, Tokunaga K, Sugano H, Ishida H, Takahashi S (2007) Lactobacillus reuteri tablets suppress Helicobacter pylori infection—a double-blind, randomized, placebo-controlled cross-over clinical study. J Jpn Assoc Infect Dis 81:387–393

    Google Scholar 

  37. Jacobsen CN, Nielsen R, Hayford AE, Moller PL, Michaelsen KF, Aerregaard AP, Sandstrom B, Tvede M, Jakobsen M (1999) Screening of probiotic activities of forty seven strains of Lactobacillus species by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65(11):49–56

    Google Scholar 

  38. Jin LZ, Ho YW, Abdullah N, Jalaludin S (1998) Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett Appl Microbiol 27:183–185

    Article  CAS  Google Scholar 

  39. Katla AK, Kruse H, Johnsen G, Herikstadt H (2001) Antimicrobial susceptibility of starter culture bacteria in Norwegian dairy products. Int J Food Microbiol 67:147–152

    Article  CAS  Google Scholar 

  40. Kiely LJ, Olson NF (2000) The physicochemical surface characteristics of Lactobacillus casei. Food Microbiol 17:277–291

    Article  CAS  Google Scholar 

  41. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    CAS  Google Scholar 

  42. Klaenhammer TR, Kleeman EG (1981) Growth characteristics, bile sensitivity and freeze damage in colonial variants of Lactobacillus acidophilus. Appl Environ Microbiol 41(6):1461–1467

    CAS  Google Scholar 

  43. Kociubinsky G, Perez P, De Antoni G (1999) Screening of bile resistance and bile precipitation in lactic acid bacteria and bifidobacteria. J Food Prot 62:905–912

    Google Scholar 

  44. Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in presence of acid and bile salts. J Cultured Dairy Prod 30:7–8

    Google Scholar 

  45. Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentation. FEMS Microbiol Rev 87:149–164

    Article  CAS  Google Scholar 

  46. Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastroint Liver Physiol 299(5):G1087–G1096

    Article  CAS  Google Scholar 

  47. Marteau P, Gerhardt MF, Myara A, Bouvier E, Trivin F, Rambaud JC (1995) Metabolism of bile salts by alimentary bacteria during transit in the human small intestine. Microbial Ecol Health Dis 8:151–157

    Article  Google Scholar 

  48. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK, Holzapfel WH (2008) Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int J Food Microbiol 126:57–64

    Article  CAS  Google Scholar 

  49. Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei. Int J Food Microbiol 103(1):109–115

    Article  Google Scholar 

  50. Morata De Ambrosini V, Gonzalez S, De Ruiz Holgando AP, Oliver G (1998) Study of morphology of cells of some strains of lactic acid bacteria and related species. J Food Prot 61:557–562

    CAS  Google Scholar 

  51. Morelli L, Cesena C, De Haen C, Gozzini L (1998) Taxonomic Lactobacillus composition of feces from human newborns during the first few days. Microbial Ecol 35:205–212

    Article  Google Scholar 

  52. Moser SA, Savage D (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67(8):3476–3480

    Article  CAS  Google Scholar 

  53. Pospiech A, Neumann B (1995) A versatile quick preparation of genomic DNA from gram positive bacteria. Trends Genetics 11:217–218

    Article  CAS  Google Scholar 

  54. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Iss Intest Microbiol 2:43–53

    CAS  Google Scholar 

  55. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  56. Schillinger U, Guigas C, Holzapfel WH (2005) In vitro adherence and other properties of lactobacilli used in probiotic yoghurt like products. Int Dairy J 15:1289–1297

    Article  CAS  Google Scholar 

  57. Smits HH, Engering A, Van der Kleij D, De Jong EC, Schipper K, van Capel TMM, Zaat BAJ, Yazdanbakhsh M, Wierenga EA, van Kooyk Y, Kapsenberg L (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cells specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115:1260–1267

    Article  CAS  Google Scholar 

  58. Song YL, Kato N, Liu CX, Kato H, Watanabe K (1999) Identification of and hydrogen peroxide production by fecal and vaginal lactobacilli isolated from Japanese women and newborn infants. J Clin Microbiol 37:3062–3064

    CAS  Google Scholar 

  59. Song YL, Kato N, Liu CX, Matsumiya Y, Kato H, Watanabe K (2000) Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group and species-specific primers derived from the 16S–23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett 187:167–173

    CAS  Google Scholar 

  60. Suja S (2003) Development of PCR techniques for the identification of dairy lactobacilli. Dissertation, N.D.R.I. Karnal, India

  61. Tannock GW, Dashkevitz MP, Feighner SD (1989) Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl Environ Microbiol 55:1848–1851

    CAS  Google Scholar 

  62. Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    Article  CAS  Google Scholar 

  63. Taranto MP, de Ruiz Holgado AP, Valdez GF (1995) Bile salt hydrolase activity of Enterococcus faecium strains. Microbiol Aliments Nut 13:345–375

    Google Scholar 

  64. Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K (2004) Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70:1176–1181

    Article  CAS  Google Scholar 

  65. Vinderola CG, Reinheimer JA (2003) Lactic acid starters and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904

    Article  CAS  Google Scholar 

  66. Zarate G, Perez Chaia A, Gonzalez S, Oliver G (2000) Viability and β-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids. J Food Prot 63:1214–1221

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Kumar Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T.P., Kaur, G., Malik, R.K. et al. Characterization of Intestinal Lactobacillus reuteri Strains as Potential Probiotics. Probiotics & Antimicro. Prot. 4, 47–58 (2012). https://doi.org/10.1007/s12602-012-9090-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9090-2

Keywords