Skip to main content
Log in

An emerging pest of radish, striped flea beetle Phyllotreta striolata (Fabricius), from Northern India: incidence, diagnosis and molecular analysis

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Severe incidence of striped flea beetle, Phyllotreta striolata (Fabricius) (Coleoptera: Chrysomelidae) in radish is being reported from Delhi National Capital Region and Haryana. The larvae and adult of this species were found to damage both roots and leaves of radish, respectively. Overall there was an average 63.02 percent leaf infestation and 53.96 percent root infestation in the radish fields surveyed, which was above the economic threshold level (25% infestation). Infestation was also observed on other cruciferous crops like turnip, mustard, cabbage and cauliflower in National Capital Region and Haryana. In the present study, we have furnished the species diagnosis, sexual dimorphism, nature of damage and illustrations of various stages of the pest. DNA barcoding was employed to confirm the species identity and molecular phylogenetic studies based on mt CO I sequences from across the world showed that there were two clusters; the Old World and the New World. The biology of the pest and the importance of studies on area specific population dynamics for formulating management strategies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basu, C. R., Bhaumik, A. R., & Sengupta, T. (1981). Chrysomelidae (Coleoptera) of Tripura (India). Records of  Zoological  Survey of  India, 78,  41–61.

  • Burgess, L. (1977). Flea beetles (Coleoptera: Chrysomelidae) attacking rape crop in the Canadian Prairie Provinces. Canadian Entomologist, 109, 21–32.

    Article  Google Scholar 

  • Capinera, J. (2001). Handbook of vegetable pests. Amsterdam: Elsevier. 800 pp.

  • Chakraborty, A. B., & Nei, M. (1977). Bottleneck effect on average heterozygosity and genetic distance with the stepwise mutation model. Evolution, 31, 347–356.

    Article  Google Scholar 

  • Cifuentes, D., Chynoweth, R., & Bielza, P. (2011). Genetic study of Mediterranean and South American populations of tomato leafminer, Tuta absoluta (Povolny, 1994) (Lepidoptera: Gelechiidae) using ribosomal and mitochondrial markers. Pest Management Science, 67, 1155–1162.

    CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

  • Feng, H. T., Huang, Y. J., & Hsu, J. C. (2000). Insecticide susceptibility of cabbage flea beetle, Phyllotreta striolata (Fab.) in Taiwan. Plant Protection Bulletin Taiwan, 42, 123–146.

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNAprimers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

  • Gissi, C., Iannelli, F., & Pesole, G. (2008). Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity, 101, 301–320.

  • Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society: Biological Sciences, 270(suppl_1), S96–S99.

  • Heikertinger, F., & Csikt, E. (1939). Chrysomelidae (Halticinae 1) in Junk. Coleopterorum Catalogus, Berlin, 25(166), 1–336.

  • Hopkins, R. J., van Dam, N. M., & Van Loon, J. J. A. (2009). Role of glucosinolate in insect-plant relationships and multitrophic interactions. The Annual Review of Entomology, 54, 57–83.

    CAS  PubMed  Google Scholar 

  • Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., & Gibson, T. J. (1998). Multiple sequence alignment with ClustalX [J]. Trends in Biochemical Sciences, 23, 403–405.

    CAS  PubMed  Google Scholar 

  • Jolivet, P., & Hawkewood, T. J. (1995). Host-plants of Chrysomelidae of the world: an essay about the relationships between the leaf beetles and their host-plants. Leiden: Backhuys Publishers. 281pp.

  • Konstantinov, A. S., & Vandenberg, N. J. (1996). Handbook of Palearctic flea beetles (Coleoptera: Chrysomelidae: Alticinae). Contributions on Entomology, International, 1, 236–439.

    Google Scholar 

  • Kumar, P. (2001). Incidence of Flea Beetle, Phyllotreta downsei Baly on Radish. Karnataka Journal of Agricultural Sciences, 14(4), 1803–1804.

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  Google Scholar 

  • Lee, C. F., Chang, H. Y., Wang, C. L., & Chen, W. S. (2011). A review of Phyllotreta Chevrolat in Taiwan (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zoological Studies, 50(4), 525–533.

    CAS  Google Scholar 

  • Madder, D. J., & Stemeroff, M. (1988). The economics of insect control on wheat, corn, and canola, 1980–1985. Bulletin of the Entomological Society of Canada, 20(1), 1–22.

    Google Scholar 

  • Margam, V. M., Coates, B. S., Ba, M. N., Sun, W., Binso-Dabire, C. L., Baoua, I., et al. (2011). Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Molecular Biology Reports, 38, 893–903.

    CAS  PubMed  Google Scholar 

  • Mason, J. A., & Kuhar, T. P. (2016). Evaluation of insecticides for the control of flea beetles in cabbage. Arthropod Management Tests, 41(1), tsw013.

    Google Scholar 

  • Pivnick, K. A., Lamb, R. J., & Reed, D. (1992). Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experiments. Journal of Chemical Ecology, 18, 863–873.

    CAS  PubMed  Google Scholar 

  • Rather, B. A., Hussain, B., & Mir, G. M. (2017). Seasonal incidence and biodiversity of flea beetles (Coleoptera: Alticinae) in a brassicaceous vegetable agro-ecosystem of Kashmir Valley. Entomological News, 127(3), 252–268.

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sarma, N. P., Singh, S., Sarma, D. K., Bhattacharyya, D. R., Kalita, M. C., Mohapatra, P. K., Dohutia, C., Mahanta, J., & Prakash, A. (2016). Mitochondrial DNA-based genetic diversity of Anopheles nivipes in North East India. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 27, 4236–4239.

  • Scherer, G. (1969). Die Alticinae des indischen Subkontinentes (Coleoptera: Chrysomelidae). Pacific Insects Monograph, 22, 1–251.

  • Shashank, P. R., Chakravarthy, A. K., Raju, B. R., & Bhanu, K. R. (2014). DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae). Applied Entomology and Zoology, 49, 283–295.

    Article  Google Scholar 

  • Shashank, P. R., Twinkle, S., Chandrashekar, K., Meshram, N. M., Suroshe, S. S., & Bajracharya, A. S. R. (2018). Genetic homogeneity in South American tomato pinworm, Tuta absoluta: a new invasive pest to oriental region. 3 Biotech, 8, 350. https://doi.org/10.1007/s13205-018-1374-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9, 678–687.

    CAS  PubMed  Google Scholar 

  • Tansey, J. A., Dosdall, L. M., & Keddie, B. A. (2008). Phyllotreta cruciferae and Phyllotreta striolata responses to insecticidal seed treatments with different modes of action. Journal of Applied Entomology, 133(3), 201–209.

    Google Scholar 

  • Trewick, S. A. (2000). Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. Journal of Biogeography, 27, 1189–1200.

    Google Scholar 

  • Ulmer, B. J., & Dosdall, L. M. (2006). Emergence of overwintered and new generation adults of the crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Crop Protection, 25, 23–30.

    Google Scholar 

  • Varma, B. K. (1961). Bionomics of Phyllotreta crueiferae Goeze (Coleoptera: Chrysomelidae). Indian Journal of Agricultural Sciences, 31, 59–63.

  • Vogler, A. P., Desalle, R., Assmann, T., Knisley, C. B., & Schultz, T. D. (1993). Molecular population genetics of the endangered tiger beetle, Cicindela dorsalis (Coleoptera: Cicindelidae). Annals of the Entomological Society of America, 86, 142–152.

    Google Scholar 

  • Westdal, P. H., & Romanow, W. (1972). Observations on the biology of the flea beetle, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Manitoba Entomology, 6, 35.

    Google Scholar 

  • Wylie, H. G. (1979). Observations on distribution, seasonal life history, and abundance of flea beetles (Coleoptera: Chrysomelidae) that infest rape crops in Manitoba. Canadian Entomologist, 111, 1345–1353.

    Google Scholar 

  • Yadav, D. C. (2010). Species composition of flea beetles infesting common cruciferous vegetables and their management in radish. Dissertation, Maharana Prathap University of Agriculture and Technology, Udaipur, Rajasthan.

  • Zepeda-Paulo, F., Simon, J. C., Rami´Rez, C. C., Fuentes-Contreras, E., Margaritopoulos, J. T., Wilson, A. C. C., et al. (2010). The invasion route for an insect pest species: the tobacco aphid in the New World. Molecular Ecology, 19, 4738–4752.

Download references

Acknowledgements

We thank Dr. KD Prathapan, Department of Entomology, College of Agriculture (Kerala Agricultural University) Thiruvananthapuram, Kerala for identification of flea beetles and for sharing few literatures. We are grateful to Head, Division of Entomology and Dr. RK Sharma, Principal Scientist and Dr. SR Sinha, Chief Technical Officer, Division of Entomology, Indian Agricultural Research Institute, New Delhi for their support during the initial surveys. The project was funded by Indian Agricultural Research Institute, New Delhi as a part of the in-house project entitled ‘Biosystematics of insect, fungi, bacteria and nematodes of economic importance (Code-CRSCIARISIL2014032264)’.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. Conceptualization: SS Anooj, PR Shashank, KV Raghavendra; Methodology: PR Shashank, KV Raghavendra, SS Anooj, V Vaibhav; Formal analysis and investigation: PR Shashank, SS Anooj, KV Raghavendra, C Nitya; Writing - original draft preparation: SS Anooj; Writing - review and editing: SS Anooj, PR Shashank, KV Raghavendra; Funding acquisition: PR Shashank, HR Sardana; Resources: SS Anooj, PR Shashank, KV Raghavendra, HR Sardana; Supervision: PR Shashank, SS Anooj. The first draft of the manuscript was written by SS Anooj and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. R. Shashank.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anooj, S.S., Raghavendra, K.V., Shashank, P.R. et al. An emerging pest of radish, striped flea beetle Phyllotreta striolata (Fabricius), from Northern India: incidence, diagnosis and molecular analysis. Phytoparasitica 48, 743–753 (2020). https://doi.org/10.1007/s12600-020-00825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00825-4

Keywords

Navigation