Skip to main content
Log in

Evaluating leaf rust reactions of pure bread wheat landrace lines using non-parametric statistics

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

This research aims to assess genotype × environment interactions (G × E) of the leaf rust (Puccinia triticina) reactions of 29 Turkish landrace-derived pure lines over seven environments. Field experiments were conducted in Çanakkale, Edirne and Samsun (Turkey) in three consecutive growing seasons from 2011-2012 to 2013–2014 under natural conditions. Leaf rust reactions of genotypes were recorded in accordance with the Modified Cobb scale. Genotype stabilities assessed by non-parametric stability statistics. Furthermore, a Principal Component Analysis (PCA) biplot of non- parametric stability statistics were used to compare their capability for capturing both stability and leaf rust reactions of genotypes in the given dataset. PCA Biplot results showed that non-parametric parameters of Thennarasu and Percentage Availability (PA) showed a positive association with mean disease severity while Rank Means (RM) were negatively associated. Non-parametric stability analyses revealed that Genotypes 29, 25 and 15 were the most stable pure lines when only 25 and 15 could be considered as resistant-stable. In order to determine both stability and leaf rust resistance in bread wheat, PA and RM are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adugna, W., & Labuschagne, M. T. (2002). Genotype-environment interactions and phenotypic stability analyses of linseed in Ethiopia. Plant Breeding, 121(1), 66–71. https://doi.org/10.1046/j.1439-0523.2002.00670.x.

    Article  Google Scholar 

  • Akcura, M., & Ceri, S. (2011). Evaluation of drought tolerance indices for selection of Turkish oat (Avena sativa L.) landraces under various environmental conditions. Zemdirbyste-Agriculture, 98(2), 157–166.

    Google Scholar 

  • Akan, K., & Akcura, M. (2018). GGE biplot analysis of reactions of bread wheat pure lines selected from central anatolian landraces of Turkey to leaf rust disease (Puccinia triticina) in multiple location-years. Cereal Research Communications., 46(2), 311–320. https://doi.org/10.1556/0806.46.2018.12.

    Article  CAS  Google Scholar 

  • Akcura, M., & Kaya, Y. (2008). Nonparametric stability methods for interpreting genotype by environment interaction of bread wheat genotypes (Triticum aestivum L.). Genetics and Molecular Biology, 31(4), 906–913. https://doi.org/10.1590/S1415-47572008005000004.

    Article  Google Scholar 

  • Akcura, M., Kaya, Y., & Taner, S. (2009). Evaluation of durum wheat genotypes using parametric and nonparametric stability statistics. Turkish Journal of Field Crops, 14(2), 111–122.

    Google Scholar 

  • Allard, R. W., & Bradshaw, A. D. (1964). Implications of genotype-environmental interactions in applied plant breeding. Crop Science, 4(5), 503. https://doi.org/10.2135/cropsci1964.0011183X000400050021x.

    Article  Google Scholar 

  • Anonymous (2018). Official statistics. Turkish State Meteorological Service. www.mgm.gov.tr. ().

  • Becker, H. C., & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101, 1–23.

    Article  Google Scholar 

  • Bolton, M. D., Kolmer, J. A., & Garvin, D. F. (2008). Wheat leaf rust caused by Puccinia triticina. Molecular Plant Pathology, 9(5), 563–575. https://doi.org/10.1111/j.1364-3703.2008.00487.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte, J. B., & Zimmermann, M. J. (1995). Correlation among yield stability parameters in common bean. Crop Science, 35(3), 905–912. https://doi.org/10.2135/cropsci1995.0011183X003500030046x.

    Article  Google Scholar 

  • Fox, P. N., Skovmand, B., Thompson, B. K., Braun, H. J., & Cormier, R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica, 47, 57–64.

    Article  Google Scholar 

  • Huerta-Espino, J., Singh, R. P., Germán, S., McCallum, B. D., Park, R. F., Chen, W. Q., & Goyeau, H. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179(1), 143–160. https://doi.org/10.1007/s10681-011-0361-x.

    Article  Google Scholar 

  • Huehn, V. M. (1979). Beitrage zur erfassung der phanoty- pischen stabilitat. EDV in Medizin und Biologie, 10, 112–117.

    Google Scholar 

  • JMP. (2016). JMP® Version 13 (pp. 1989–2019). Cary, NC: SAS Institute Inc..

    Google Scholar 

  • Kang, M. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications, 16, 113–115.

    Google Scholar 

  • Karimizadeh, R., Mohammadi, M., Sabaghnia, N., & Shefazadeh, M. K. (2012). Using Huehn’s nonparametric stability statistics to investigate genotype — Environment interaction. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 293–301.

    Article  Google Scholar 

  • Kaya, Y., & Turkoz, M. (2016). Evaluation of genotype by environment interaction for grain yield in durum wheat using non-parametric stability statistics. Turkish Journal of Field Crops, 21, 51–59.

    Google Scholar 

  • Ketata, H., Yan, S. K., Nachit, M. (1989). Relative consistency performance across environments. Int. Symp. On physioelogy and breeding of winter cereals for stressed mediterranean environments. Montpellier, July 3–6, 1989.

  • Kilic, H., Akcura, M., & Aktas, H. (2010). Assessment of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in multi-environments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 271–279.

    Google Scholar 

  • Langer, S., Frey, K. J., & Baily, T. (1979). Association of different stability models in wheat. Euphytica, 28, 17–24.

    Article  Google Scholar 

  • Lin, C. S., Binns, M. R., & Lefkovitch, L. P. (1986). Stability analysis: Where do we stand? Crop Science, 26(1), 894–900. https://doi.org/10.2135/cropsci1986.0011183X002600050012x.

    Article  Google Scholar 

  • Minitab 17 Statistical Software. (2010). State college. PA: Minitab, Inc.. www.minitab.com.

    Google Scholar 

  • Mohammadi, R., Abdulahi, A., Haghparast, R., & Armion, M. (2007). Interpreting genotype× environment interactions for durum wheat grain yields using nonparametric methods. Euphytica, 157(1–2), 239–251.

    Article  CAS  Google Scholar 

  • Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3), 419–432. https://doi.org/10.1007/s10681-007-9600-6.

    Article  Google Scholar 

  • Ozturk, M. Z., Cetinkaya, G., & Aydin, S. (2016). Climate types of Turkey according to Köppen-Geiger climate classification. Istanbul University Journal of Geography, 35, 17–27. https://doi.org/10.26650/JGEOG330955.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the koppen-Geiger climate classification. Hydrology and earth system sciences discussions. European geosciences union, 4(2), 439–473.

    Google Scholar 

  • Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26(5), 496–500.

    Article  Google Scholar 

  • Primomo, V. S., Falk, D. E., Ablett, G. R., Tanner, J. W., & Rajcan, I. (2002). Genotype x environment interactions, stability and agronomic performance of soybean with altered fatty acid profiles. Crop Science, 42(1), 37–44. https://doi.org/10.2135/cropsci2002.0037.

    Article  CAS  PubMed  Google Scholar 

  • Purchase, J. L., Hatting, H., & van Deventer, C. S. (2000). Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance South African Journal of Plant and Soil, 17(3), 101–107. https://doi.org/10.1080/02571862.2000.10634878.

    Article  Google Scholar 

  • Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). Non- parametric methods for interpreting genotype · environment interaction of lentil genotypes. Crop Science, 46, 1100–1106.

    Article  Google Scholar 

  • Sabaghnia, N., Mohammadi, M., & Karimizadeh, R. (2013). Interpreting genotype× environment interaction of beard wheat genotypes using different nonparametric stability statistics. Poljoprivreda i Sumarstvo, 59(2), 21.

    Google Scholar 

  • Sabaghnia, N. (2015). Identification of the most stable genotypes in multi-environment trials by using nonparametric methods. Acta agriculturae Slovenica, 105(1), 103–110.

    Article  Google Scholar 

  • Sabaghnia, N. (2016). Nonparametric statistical methods for analysis of genotype × environment interactions in plant pathology. Australasian Plant Pathology, 45(6), 571–580. https://doi.org/10.1007/s13313-016-0453-0.

    Article  Google Scholar 

  • Scapim, C. A., Oliveira, V. R., De Lucca, E., Braccini, A., Cruz, C. D., De Bastos Andrade, C. A., & Vidigal, M. C. G. (2000). Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics and Molecular Biology, 23(2), 387–393. https://doi.org/10.1590/S1415-47572000000200025.

    Article  Google Scholar 

  • St.Pierre, C. A., Klinck, H. R., & Gauthier, F. M. (1967). Early generation selection under different environments as it influences adaptation of barley. Canadian Journal of Plant Science, 47, 507–517.

    Article  Google Scholar 

  • Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 29:237-245.

  • Thennarasu, K. (1995). On certain non-parametric proce- dures for studying genotype–environment interactions and yield stability. PhD thesis. PJ School, IARI, New Delhi, India.

  • Torres-Salinas, D., Robinson-García, N., Jiménez-Contreras, E., Herrera, F., & López-Cózar, E. D. (2013). On the use of biplot analysis for multivariate bibliometric and scientific indicators. Journal of the American Society for Information Science and Technology, 64(7), 1468–1479.

    Article  CAS  Google Scholar 

  • Yates, F., & Cochran, W. G. (1938). The analysis of groups of experiments. J.Agric.Sci., 28, 556–580.

    Article  Google Scholar 

  • Yue, G. L., Roozeboom, K. L., Schapaugh, W. T., & Liang, G. H. (1997). Evaluation of soybean cultivars using parametric and nonparametric stability estimates. Plant Breeding, 116(3), 271–275. https://doi.org/10.1111/j.1439-0523.1997.tb00995.x.

    Article  Google Scholar 

  • Yan, W. (2014). Crop variety trials: Data management and analysis. John Wiley & Sons. ISBN 978-1-118-68864-9.

  • Zali, H., Farshadfar, E., & Sabaghpour, S. H. (2011). Non-parametric analysis of phenotypic stability in chickpea (Cicer arietinum L.) genotypes in Iran. Crop Breeding Journal, 1(1), 89–100.

    Google Scholar 

  • Zewdie, Y., & Bosland, P. W. (2000). Evaluation of genotype, environment, and genotype-by-environment interaction for capsaicinoids in Capsicum annuum L. Euphytica, 111(3), 185–190. https://doi.org/10.1023/A:1003837314929.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK) for their financial support under project no: 111O255 and Dr. Selin Türkmen from ÇOMÜ Lapseki Vocational School for her kind support in formulating the mathematical equations of non-parametric stability statistics.

Funding

This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) grant number: 111O255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hocaoğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocaoğlu, O., Akan, K. & Akçura, M. Evaluating leaf rust reactions of pure bread wheat landrace lines using non-parametric statistics. Phytoparasitica 48, 261–271 (2020). https://doi.org/10.1007/s12600-019-00782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-019-00782-7

Keywords

Navigation