Skip to main content

Advertisement

Log in

Plant nutrition for management of white mold in sweet basil

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Plant nutrition affects plant diseases and epidemics development. The effects of supplemental nitrogen, potassium and calcium on white mold susceptibility in sweet basil were tested in pots and under commercial conditions. An increased concentration of N in the irrigation solution increased the N content of shoots, which led to higher susceptibility to white mold on cut shoots in a linear manner. Increased levels of K in the irrigation solution and in the sweet basil tissue resulted in an exponential decrease in the severity of white mold on cut shoots. Likewise, foliar application of K also significantly decreased white mold susceptibility. Lower K fertigation under commercial-like conditions significantly increased susceptibility to S. sclerotiorum infection. Calcium decreased disease susceptibility, but there was no additive effect when Ca was added to the K treatment. Combining Ca and K fertigation with foliar-applied KCl and fungicide (boscalid + pyraclostrobin) provided synergistic lower disease on cut shoots. The K spray was not as effective as the fungicide for suppressing disease. In conclusion, proper K fertilization and the application of Ca can significantly reduce the susceptibility of sweet basil shoots to S. sclerotiorum and may be integrated into management programs for proper disease control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899–904.

    Article  Google Scholar 

  • Abia, J. A., & Smith, B. N. (1980). Mineral nutritional status of pumpkin and infection by Sclerotinia sclerotiorum. Plant Physiology, 65, 106 (Abstr.).

    Google Scholar 

  • Arfaoui, A., El Hadrami, A., Adam, L. R., & Daayf, F. (2016). Pre-treatment with calcium enhanced defense-related genes' expression in the soybean's isoflavone pathway in response to Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 93, 12–21.

    Article  CAS  Google Scholar 

  • Arfaoui, A., El Hadrami, A., & Daayf, F. (2018). Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiology and Biochemistry, 122, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Bangerth, F. (1979). Calcium related physiological disorders of plant. Annual Review of Phytopathology, 17, 97–122.

    Article  CAS  Google Scholar 

  • Bar-Tal, A., Baas, R., Ganmore-Neumann, R., Dik, A., Marissen, N., Silber, A., Davidov, S., Hazan, A., Kirshner, B., & Elad, Y. (2001). Rose flower production and quality as affected by Ca concentration in the petal. Agronomie, 21, 393–402.

    Article  Google Scholar 

  • Ben Yephet, Y. (1988). Control of sclerotia and apothecia of Sclerotinia sclerotiorum by metham sodium, methyl bromide and soil solarization. Crop Protection, 7, 25–27.

    Article  CAS  Google Scholar 

  • Biddle, A. J. (2001). Botrytis gray mold. In J. M. Kraft & F. L. Pfleger (Eds.), Compendium of pea diseases and pests (2nd ed., pp. 31–32). St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Datnoff, L. E., Elmer, W. E., & Huber, D. W. (Eds.). (2007). Mineral nutrition and plant disease. St. Paul: The American Phytopathological Society.

    Google Scholar 

  • Dudai, N., Chaimovitsh, D., Reuveni, R., Ravid, U., Larkov, O., & Putievsky, E. (2002). Breeding of sweet basil (Ocimum basilicum) resistant to Fusarium oxyxsporum f. sp. basilicum. Journal of Herbs Spices and Medicinal. Plants, 9, 45–51.

    CAS  Google Scholar 

  • Elad, Y., & Evensen, K. (1995). Physiological aspects of resistance to Botrytis cinerea. Phytopathology, 85, 637–643.

    Google Scholar 

  • Elad, Y., Israeli, L., Fogel, M., Rav David, D., Kenigsbuch, D., Chalupowicz, D., Maurer, D., Lichter, A., Silverman, D., Biton, S., Yitzhak, S., Harari, D., Maduel, A., Pivonia, S., & Adler, U. (2014). Conditions influencing the development of sweet basil grey mould and cultural measures for disease management. Crop Protection, 64, 67–77.

    Article  Google Scholar 

  • Elad, Y., Fogel, M., Silverman, D., Biton, S., Yitzhak, S., Harari, D., & Adler, U. (2015). White mould of sweet basil: Conditions influencing its development in greenhouses and cultural measures for disease management. Plant Pathology, 64, 951–960.

    Article  Google Scholar 

  • Engelhard, W. (1989). Soilborne plant pathogens: Management of diseases with macro- and microelements. St. Paul: American Phytopathological Society.

    Google Scholar 

  • Erel, R., Dag, A., Ben-Gal, A., Schwartz, A., & Yermiyahu, U. (2008). Flowering and fruit-set of young olive (Olea europea L. cv. Barnea) trees in response to nitrogen, phosphorus and potassium. Journal of the American Society of Horticultural Sciences, 133, 639–647.

    Article  Google Scholar 

  • Garibaldi, A., Gullino, M. L., & Minuto, G. (1997). Diseases of basil and their management. Plant Disease, 81, 124–132.

    Article  PubMed  Google Scholar 

  • Hartill, W. F. T. (1980). Aerobiology of Sclerotinia sclerotiorum and Botrytis cinerea spores in New Zealand tobacco crops. New Zealand Agricultural Research, 23, 259–262.

    Article  Google Scholar 

  • Hobbs, E. L., & Waters, W. E. (1964). Influence of nitrogen and potassium on susceptibility of Chrysanthemum morifolium to Botrytis cinerea. Phytopathology, 54, 674–676.

    CAS  Google Scholar 

  • Hochmuth, R. C., Davis, L. L. L., Laughlin, W. L., Simonne, E. H., & Sprenkel, R. K. (2004). Developing a production system for growing organic herbs using soilless culture in a greenhouse. University of Florida Cooperation Extension Service, 22, 37–42.

    Google Scholar 

  • Holcomb, G. E., & Reed, M. J. (1994). Stem rot of basil caused by Sclerotinia sclerotiorum. Plant Disease, 78, 924.

    Article  Google Scholar 

  • Kirkby, E. A., & Pilbeam, D. J. (1984). Calcium as a plant nutrient. Plant and Cell Environment, 7, 397–405.

    Article  CAS  Google Scholar 

  • Koike, S. T. (2000). Occurrence of stem rot of basil, caused by Sclerotinia sclerotiorum, in coastal California. Plant Disease, 84, 1342.

    Article  CAS  PubMed  Google Scholar 

  • Kosman, E., & Cohen, Y. (1996). Procedures for calculating the differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology, 86, 1263–1272.

    CAS  Google Scholar 

  • Leigh, R. A., & Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 97, 1–13.

    Article  CAS  Google Scholar 

  • Levy, Y., Benderly, M., Cohen, Y., Gisi, U., & Bass, D. (1986). The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. Bulletin EPPO, 16, 651–657.

    Article  Google Scholar 

  • Liang, X., & Rollins, J. A. (2018). Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 108, 1128–1140.

    Article  CAS  PubMed  Google Scholar 

  • Marschner, H. (1986). Mineral Nutrition of higher plants (pp. 229–448). London: Academic Press.

    Google Scholar 

  • Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., Barbacci, A., & Raffaele, S. (2016). Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Frontiers in Plant Sciences, 31. https://doi.org/10.3389/fpls.2016.00422.

  • Newton, H. C., & Sequeira, L. (1972). Ascospores of primary infective propagules of Sclerotinia sclerotiorum in Wisconsin. Plant Disease Reporter, 56, 789–802.

    Google Scholar 

  • Ouhibi, C., Attia, H., Nicot, P., Lecompte, F., Vidal, V., Lachaal, M., Urban, L., & Aarrouf, J. (2015). Effects of nitrogen supply and of UV-C irradiation on the susceptibility of Lactuca sativa L. to Botrytis cinerea and Sclerotinia minor. Plant and Soil, 393, 35–46.

    Article  CAS  Google Scholar 

  • Paula Júnior Trazilbo, J., Vieira, R. F., Teixeira, H., & Carneiro, J. E. S. (2009). Foliar application of calcium chloride and calcium silicate decreases white mold intensity on dry beans. Tropic. Plant Pathology, 34, 171–174.

    Google Scholar 

  • Paulitz, T. C. (1997). First report of Sclerotinia sclerotiorum on basil in Canada. Plant Disease, 81, 229.

    Article  CAS  PubMed  Google Scholar 

  • Poovaiah, B. W., Reddy, A. S. N., & McFadden, J. J. (1987). Calcium messenger system: Role of protein phosphorylation and inositol bisphospholipids. Physiologia Plantarum, 69, 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Prabhu, A. S., Fageria, N. K., Huber, D. M., & Rodrigues, F. A. (2008). Potassium and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 57–78). St Paul: APS Press.

    Google Scholar 

  • Schachtman, D. P., & Shin, R. (2006). Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology, 58, 47–69.

    Article  CAS  Google Scholar 

  • Shtienberg, D., Elad, Y., Borenshtein, M., Ziv, G., Grava, A., & Cohen, S. (2010). Polyethylene mulch modulates greenhouse microclimate and reduces infection of Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Phytopathology, 100, 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Suelter, C. H. (1970). Enzymes activated by monovalent cations. Science, 168, 789–795.

    Article  CAS  PubMed  Google Scholar 

  • Sweeny, D. W., Granade, G. V., Eversmeyer, M. G., & Whitney, D. A. (2000). Phosphorus, potassium, chloride, and fungicide effects on wheat yield and leaf rust severity. Journal of Plant Nutrition, 23, 1267–1281.

    Article  Google Scholar 

  • Volpin, H., & Elad, Y. (1991). Influence of calcium nutrition on susceptibility of rose flowers to gray mold. Phytopathology, 81, 1390–1394.

    Article  CAS  Google Scholar 

  • Yermiyahu, U., Israeli, L., Rav David, D., Faingold, I., & Elad, Y. (2015). Higher potassium concentration in shoots reduces gray mold in sweet basil. Phytopathology, 105, 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  • Yermiyahu, U., Shamai, I., Peleg, R., Dudai, N., & Shtienberg, D. (2006). Reduction of Botrytis cinerea sporulation in sweet basil by altering the concentrations of nitrogen and calcium in the irrigation solution. Plant Pathology, 55, 544–552.

    Article  CAS  Google Scholar 

  • Youssef, K., & Roberto, S. R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of 'Italia' table grapes. Postharvest Biology and Technology, 87, 95–102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Ahmed Hoshala, Ludmila Yosofov, Shoshana Suriano, Ziva Gilad, Ephraim Tzipilevitz, Ahiam Meir, Shahar Yitzhak, Tzion Deko, Dafna Harari, Shimon Pivonia, Ami Maduel, David Silverman, Shimon Biton, Yoel Hadad, Svetlana Dubrinin, Menahem Borenshtein and Ran Shulhani. This research was funded by the Herb Growers Board and by the Chief Scientist of the Israeli Ministry of Agriculture, project number 132-1408. Publication of the Agricultural Research Organization no. 543/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigal Elad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rav David, D., Yermiyahu, U., Fogel, M. et al. Plant nutrition for management of white mold in sweet basil. Phytoparasitica 47, 99–115 (2019). https://doi.org/10.1007/s12600-019-00716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-019-00716-3

Keywords

Navigation