Skip to main content
Log in

P450-mediated detoxification of botanicals in insects

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

In recent years, botanical insecticides have gradually replaced the traditional synthetic insecticides, with the properties of strong pertinence and environment friendly. Many new botanical insecticides are developed and used, meanwhile insect develop its resistance to these insecticides. Previous studies have proved that Cytochrome P450 monooxygenases (CYPs) play a critical role in insect detoxification. Genomic and proteomic approaches focused on P450 expression and regulation at the transcript and protein levels have made substantial progress. The review covers the recent years’ research of typical botanicals metabolism mediated by CYPs, the relationship between function and structural characters of P450 enzymes, as well as the expression and regulation of related P450 genes in botanicals metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CYPs:

Cytochrome P450 monooxygenases

MRPs:

Multidrug resistance-associated protein transporters

SRS:

Substrate recognition site

TEs:

Transposable elements

XRE-xan:

Xenobiotic response element

XRE-AhR:

Putative elements

nAChRs:

Nicotinic acetylcholine receptors

SNO:

Senecionine N-oxygenase

PAs:

Pyrrolizidine alkaloids

JH:

Insect juvenile hormone

LTR:

Long terminal repeat

OCT-1:

Octamer-1 binding site element

EcRE:

Ecdysone-responsive element

EBP:

Enhancer-binding protein C

CPR:

Cytochrome P450 reductase

dsRNA:

Double-stranded RNA

RNAi:

RNA interference

PIs:

Proteinase inhibitors

FMN:

Flavin mononucleotide

Inr:

Consensus arthropod initiator element

STRE:

Stress response elements

References

  • Arnosti, D. N. (2003). Analysis and function of transcriptional regulatory elements, insights from Drosophila. Annual Review of Entomology, 48, 579–602.

    Article  CAS  PubMed  Google Scholar 

  • Ashour, M., M. Wink & J. Gershenzon.(2010). Biochemistry of terpenoids, monoterpenes, sesquiterpenes and diterpenes. Annual Plant Reviews Volume 40, Biochemistry of Plant Secondary Metabolism, Second Edition. 40,258–303.

  • Baer, B. R., Schuman, J. T., Campbell, A. P., Cheesman, M. J., Nakano, M., Moguilevsky, N., Kunze, K. L., & Rettie, A. E. (2005). Sites of covalent attachment of CYP4 enzymes to heme, evidence for microheterogeneity of P450 heme orientation. Biochemistry, 44, 13914–13920.

    Article  CAS  PubMed  Google Scholar 

  • Bass, C., Zimmer, C. T., Riveron, J. M., Wilding, C. S., Wondji, C. S., Kaussmann, M., Field, L. M., Williamson, M. S., & Nauen, R. (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proceedings of the National Academy of Sciences, 110, 19460–19465.

    Article  CAS  Google Scholar 

  • Baudry, J., Li, W., Pan, L., Berenbaum, M. R., & Schuler, M. A. (2003). Molecular docking of substrates and inhibitors in the catalytic site of CYP6B1, an insect cytochrome P450 monooxygenase. Protein Engineering, 16, 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Bautista, M. A., Miyata, T., Miura, K., & Tanaka, T. (2009). RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology, 39, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara, S., Dean, E. D., Lam, V., & Ganguly, R. (2006). Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene, 377, 56–64.

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann, J., & Keeling, C. I. (2008). Terpenoid biomaterials. The Plant Journal, 54, 656–669.

    Article  CAS  PubMed  Google Scholar 

  • Boulogne, I., Petit, P., Ozier-Lafontaine, H., Desfontaines, L., & Loranger-Merciris, G. (2012). Insecticidal and antifungal chemicals produced by plants, a review. Environmental Chemistry Letters, 10, 325–347.

    Article  CAS  Google Scholar 

  • Brown, R. P., McDonnell, C. M., Berenbaum, M. R., & Schuler, M. A. (2005). Regulation of an insect cytochrome P450 monooxygenase gene (CYP6B1) by aryl hydrocarbon and xanthotoxin response cascades. Gene, 358, 39–52.

    Article  CAS  PubMed  Google Scholar 

  • Casida, J. E. (2010). Neonicotinoid metabolism, compounds, substituents, pathways, enzymes, organisms, and relevance. Journal of Agricultural and Food Chemistry, 59(7), 2923–2931.

    Article  PubMed  CAS  Google Scholar 

  • Chahine, S., & O’Donnell, M. J. (2011). Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster. The Journal of Experimental Biology, 214, 462–468.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., & Li, X. (2007). Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes. BMC Evolutionary Biology, 7, 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, J. S., Berenbaum, M., & Schuler, M. (2002). Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1, a cytochrome P450 monooxygenase. Insect Molecular Biology, 11, 175–186.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. K., Berry, R. E., Shokhireva, T., Murataliev, M. B., Zhang, H., & Walker, F. A. (2010). Scanning chimeragenesis, the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. Journal of Biological Inorganic Chemistry, 15, 159–174.

    Article  CAS  PubMed  Google Scholar 

  • Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A., Batterham, P., & Daborn, P. J. (2007). Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1. Genetics, 175, 1071–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., & Daborn, P. J. (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proceedings of the National Academy of Sciences of the United States of America, 106, 5731–5736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, H., Boey, A., Lumb, C., Willoughby, L., Batterham, P., & Daborn, P. J. (2011). Induction of a detoxification gene in Drosophila melanogaster requires an interaction between tissue specific enhancers and a novel cis-regulatory element. Insect Biochemistry and Molecular Biology, 41, 863–871.

    Article  CAS  PubMed  Google Scholar 

  • Dai, L., Wang, C., Zhang, X., Yu, J., Zhang, R., & Chen, H. (2014). Two CYP4 genes of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae, Scolytinae), and their transcript levels under different development stages and treatments. Insect Molecular Biology, 23, 598–610.

    Article  CAS  PubMed  Google Scholar 

  • Danielson, P. B., MacIntyre, R. J., & Fogleman, J. C. (1997). Molecular cloning of a family of xenobiotic-inducible drosophilid cytochrome P450s, evidence for involvement in host-plant allelochemical resistance. Proceedings of the National Academy of Sciences, 94, 10797–10802.

    Article  CAS  Google Scholar 

  • Danielson, P., Foster, J., McMahill, M., Smith, M., & Fogleman, J. (1998). Induction by alkaloids and phenobarbital of Family 4 Cytochrome P450s in Drosophila, evidence for involvement in host plant utilization. Molecular and General Genetics MGG, 259, 54–59.

    Article  CAS  PubMed  Google Scholar 

  • Davies, L., Williams, D. R., Aguiar-Santana, I. A., Pedersen, J., Turner, P. C., & Rees, H. H. (2006). Expression and down-regulation of cytochrome P450 genes of the CYP4 family by ecdysteroid agonists in Spodoptera littoralis and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 36, 801–807.

    Article  CAS  PubMed  Google Scholar 

  • Denlinger, D., Yocum, G., & Rinehart, J. (2005). Comprehensive molecular insect science. Comprehensive Molecular Insect Science, 3, 615–650.

    Article  CAS  Google Scholar 

  • Despres, L., David, J.-P., & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22, 298–307.

    Article  Google Scholar 

  • Ding, M., Gao, Q., Mo, J., & Cheng, J. A. (2007). Construction and validation of an insecticide resistance-associated DNA microarray. Journal of Pesticide Science, 32, 32–41.

    Article  CAS  Google Scholar 

  • Dubey, N., Shukla, R., Kumar, A., Singh, P., & Prakash, B. (2010). Prospects of botanical pesticides in sustainable agriculture. Current Science, 98(4), 479–480.

    Google Scholar 

  • El-Wakeil, N. E. (2013). Botanical pesticides and their mode of action. Gesunde Pflanzen, 65, 125–149.

    Article  CAS  Google Scholar 

  • Félix, R. C., & Silveira, H. (2011). The interplay between tubulins and P450 cytochromes during Plasmodium berghei invasion of Anopheles gambiae midgut. PloS One, 6, e24181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feyereisen, R. (1999). Insect P450 enzymes. Annual Review of Entomology, 44, 507–533.

    Article  CAS  PubMed  Google Scholar 

  • Feyereisen, R. (2014). Insect P450 inhibitors and insecticides, challenges and opportunities. Pest Management Science, 71, 793–800.

    Article  PubMed  CAS  Google Scholar 

  • Fogleman, J. C. (2000). Response of Drosophila melanogaster to selection for P450-mediated resistance to isoquinoline alkaloids. Chemico-Biological Interactions, 125, 93–105.

    Article  CAS  PubMed  Google Scholar 

  • Forister, M., Dyer, L., Singer, M., Stireman, J., III, & Lill, J. (2012). Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology, 93, 981–991.

    Article  CAS  PubMed  Google Scholar 

  • Gao, R. N., Zhang, T., Zhao, S. S., Li, B., Chen, Y. H., Shen, W. D., & Wei, Z. G. (2011). Expression Profiles of P450 4 Family Genes in Larval Fatbody and Midgut of Bombyx Mori Exposed to Rutin. Advanced Materials Research, 175, 61–66.

    Article  Google Scholar 

  • Gershenzon, J., Fontana, A., Burow, M., Wittstock, U., & Degenhardt, J. (2012). Mixtures of plant secondary metabolites, metabolic origins and ecological benefits. The ecology of plant secondary metabolites, from genes to global processes (pp. 56–77). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Guo, F., Lei, J., Sun, Y., Chi, Y. H., Ge, F., Patil, B. S., Koiwa, H., Zeng, R., & Zhu-Salzman, K. (2012a). Antagonistic regulation, yet synergistic defense, effect of bergapten and protease inhibitor on development of cowpea bruchid, Callosobruchus maculatus. PloS One, 7, e41877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Z., Cheng Zhu, Y., Huang, F., Luttrell, R., & Leonard, R. (2012b). Microarray analysis of global gene regulation in the Cry1Ab‐resistant and Cry1Ab‐susceptible strains of Diatraea saccharalis. Pest Management Science, 68, 718–730.

    Article  CAS  PubMed  Google Scholar 

  • Gutzeit, H. O., Henker, Y., Kind, B., & Franz, A. (2004). Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Biochemical and Biophysical Research Communications, 318, 490–495.

    Article  CAS  PubMed  Google Scholar 

  • Habib, H., & Fazili, K. M. (2007). Plant protease inhibitors: a defense strategy in plants. Biotechnology and Molecular Biology Reviews, 2(3), 68–85.

    Google Scholar 

  • Hartmann, T. (1999). Chemical ecology of pyrrolizidine alkaloids. Planta, 207, 483–495.

    Article  CAS  Google Scholar 

  • Harvey, C. B., & Williams, G. R. (2002). Mechanism of thyroid hormone action. Thyroid, 12, 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Hlavica, P. (2011). Insect cytochromes P450, topology of structural elements predicted to govern catalytic versatility. Journal of Inorganic Biochemistry, 105, 1354–1364.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, B. W., Longnecker, M. T., & Pietrantonio, P. V. (2011). Transcriptional overexpression of CYP6B8/CYP6B28 and CYP6B9 is a mechanism associated with cypermethrin survivorship in field-collected Helicoverpa zea (Lepidoptera, Noctuidae) moths. Pest Management Science, 67, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Irving, H., Riveron, J., Ibrahim, S., Lobo, N., & Wondji, C. (2012). Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestus. Heredity, 109, 383–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal, F., Pandey, P. K., Singh, D., & Khan, M. (2013). Serine protease inhibitors in plants, nature’s arsenal crafted for insect predators. Phytochemistry Reviews, 12, 1–34.

    Article  CAS  Google Scholar 

  • Jander, G. (2014). Revisiting plant‐Herbivore Co‐Evolution in the Molecular Biology Era. Annual Plant Reviews volume 47, Insect-Plant Interactions (pp. 361–384).

  • Johnson, R. M., Mao, W., Pollock, H. S., Niu, G., Schuler, M. A., & Berenbaum, M. R. (2012). Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PloS One, 7, e31051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaikherd, A., Jayanta, M. S., Boonjawat, J., Aiba, S.-i., & Sukwattanasinitt, M. (2004). Depolymerization of β-chitin to mono-and disaccharides by the serum fraction from the para rubber tree, Hevea brasiliensis. Carbohydrate Research, 339, 2799–2804.

    Article  CAS  PubMed  Google Scholar 

  • Kliot, A., Kontsedalov, S., Ramsey, J. S., Jander, G., & Ghanim, M. (2014). Adaptation to nicotine in the facultative tobacco‐feeding hemipteran Bemisia tabaci. Pest Management Science, 70, 1595–1603.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., Pandit, S. S., Steppuhn, A., & Baldwin, I. T. (2014). Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Prasad, M., Srivastav, S., Suzuki, N., & Srivastav, A. (2015). Toxicological impacts of a botanical pesticide, azadirachtin on corpuscles of Stannius of stinging catfish, Heteropneustes fossilis. International Journal of Environmental Science and Technology, 12, 507–512.

    Article  CAS  Google Scholar 

  • Langel, D., & Ober, D. (2011). Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids. Phytochemistry, 72, 1576–1584.

    Article  CAS  PubMed  Google Scholar 

  • Lertkiatmongkol, P., Jenwitheesuk, E., & Rongnoparut, P. (2011). Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism, insights into differences in substrate selectivity. BMC Research Notes, 4, 321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Zangerl, A., Schuler, M., & Berenbaum, M. (2004a). Characterization and evolution of furanocoumarin‐inducible cytochrome P450s in the parsnip webworm, Depressaria pastinacella. Insect Molecular Biology, 13, 603–613.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Baudry, J., Berenbaum, M. R., & Schuler, M. A. (2004b). Structural and functional divergence of insect CYP6B proteins, from specialist to generalist cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America, 101, 2939–2944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231–253.

    Article  PubMed  CAS  Google Scholar 

  • Li, B., Zhang, H., Ni, M., Wang, B.-B., Li, F.-C., Xu, K.-Z., Xia, Q.-Y., & Zhao, P. (2014). Identification and characterization of six cytochrome P450 genes belonging to CYP4 and CYP6 gene families in the silkworm, Bombyx mori. Molecular Biology Reports, 41, 5135–5146.

    Article  CAS  PubMed  Google Scholar 

  • Liu, N., Zhu, F. (2011). House Fly Ctyochrome P450s, Their role in insecticide resistance and strategies in the isolation and characterization. Recent Advances in Entomological Research, Springer. Springer Berlin Heidelberg.

  • Liu, X., Chen, J., & Yang, Z. (2010). Characterization and Induction of Two Cytochrome P450 Genes, CYP6AE28 and CYP6AE30, in Cnaphalocrocis medinalis, Possible Involvement in Metabolism of Rice Allelochemicals. Zeitschrift fur Naturforschung C: Journal of Biosciences, 65c(7), 19–725.

    Google Scholar 

  • Liu, S., Liang, Q. M., Huang, Y. J., Yuan, X., Zhou, W. W., Qiao, F., Cheng, J., Gurr, G. M., & Zhu, Z. R. (2013). Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 166, 225–231.

    Article  CAS  PubMed  Google Scholar 

  • López, M., & Pascual-Villalobos, M. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, 31, 284–288.

    Article  CAS  Google Scholar 

  • Lopez, M. F., Cano-Ramirez, C., Cesar-Ayala, A. K., Ruiz, E. A., & Zuniga, G. (2013). Diversity and expression of P450 genes from Dendroctonus valens LeConte (Curculionidae, Scolytinae) in response to different kairomones. Insect Biochemistry and Molecular Biology, 43, 417–432.

    Article  CAS  PubMed  Google Scholar 

  • Maag, D., Erb, M., Köllner, T. G., & Gershenzon, J. (2014). Defensive weapons and defense signals in plants, Some metabolites serve both roles. Bioessays, 37, 167–174.

    Article  PubMed  Google Scholar 

  • Macel, M. (2011). Attract and deter, a dual role for pyrrolizidine alkaloids in plant–insect interactions. Phytochemistry Reviews, 10, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Mao, W., Rupasinghe, S. G., Zangerl, A. R., Berenbaum, M. R., & Schuler, M. A. (2007). Allelic variation in the Depressaria pastinacella CYP6AB3 protein enhances metabolism of plant allelochemicals by altering a proximal surface residue and potential interactions with cytochrome P450 reductase. Journal of Biological Chemistry, 282, 10544–10552.

    Article  CAS  PubMed  Google Scholar 

  • Mao, W., Rupasinghe, S. G., Johnson, R. M., Zangerl, A. R., Schuler, M. A., & Berenbaum, M. R. (2009). Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera (Hymenoptera, Apidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 154, 427–434.

    Article  CAS  Google Scholar 

  • McDonnell, C. M., Brown, R. P., Berenbaum, M. R., & Schuler, M. A. (2004). Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochemistry and Molecular Biology, 34, 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  • Meunier, B., De Visser, S. P., & Shaik, S. (2004). Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chemical Reviews, 104, 3947–3980.

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer, A., & Boland, W. (2012). Plant defense against herbivores, chemical aspects. Annual Review of Plant Biology, 63, 431–450.

    Article  PubMed  CAS  Google Scholar 

  • Mo, S.-L., Zhou, Z.-W., Yang, L.-P., Wei, M. Q., & Zhou, S.-F. (2009). New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part II. Current Drug Metabolism, 10, 1127–1150.

    Article  CAS  PubMed  Google Scholar 

  • Mordue, A., E. Morgan & A. Nisbet. (2010). Azadirachtin, a natural product in insect control. Comprehensive Molecular Insect Science. Biochemistry and Molecular Biology. 2005. Volume 4.

  • Munerato, M. C., Sinigaglia, M., Reguly, M. L., & de Andrade, H. H. R. (2005). Genotoxic effects of eugenol, isoeugenol and safrole in the wing spot test of Drosophila melanogaster. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 582, 87–94.

    Article  CAS  Google Scholar 

  • Narberhaus, I., Zintgraf, V., & Dobler, S. (2005). Pyrrolizidine alkaloids on three trophic levels–evidence for toxic and deterrent effects on phytophages and predators. Chemoecology, 15, 121–125.

    Article  CAS  Google Scholar 

  • Nebapure, S. M., Srivastava, C. & Walia, S. (2014). Insect Growth Inhibitory Potential of Glory Lily, Gloriosa superba Linn.(Colchicaceae) Against Tobacco Leaf Eating Caterpillar, Spodoptera litura [Fabricius](Lepidoptera: Noctuidae). Entomologia Generalis.61-74.

  • Niu, G., Rupasinghe, S. G., Zangerl, A. R., Siegel, J. P., Schuler, M. A., & Berenbaum, M. R. (2011). A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochemistry and Molecular Biology, 41, 244–253.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A. V., & Fluck, C. E. (2013). NADPH P450 oxidoreductase, structure, function, and pathology of diseases. Pharmacology and Therapeutics, 138, 229–254.

    Article  CAS  PubMed  Google Scholar 

  • Perry, T., Batterham, P., & Daborn, P. J. (2011). The biology of insecticidal activity and resistance. Insect Biochemistry and Molecular Biology, 41, 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Petersen Brown, R., Berenbaum, M., & Schuler, M. (2004). Transcription of a lepidopteran cytochrome P450 promoter is modulated by multiple elements in its 5′UTR and repressed by 20‐hydroxyecdysone. Insect Molecular Biology, 13, 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, R. A., Niamsup, H., Berenbaum, M. R., & Schuler, M. A. (2003). Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals. Biochimica et Biophysica Acta (BBA) - General Subjects, 16, 269–282.

    Article  Google Scholar 

  • Puinean, A. M., Foster, S. P., Oliphant, L., Denholm, I., Field, L. M., Millar, N. S., Williamson, M. S., & Bass, C. (2010). Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genetics, 6, e1000999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranasinghe, C., & Hobbs, A. A. (1998). Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner), possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochemistry and Molecular Biology, 28, 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29, 913–920.

    Article  CAS  Google Scholar 

  • Razavi, S. M. (2011). Plant coumarins as allelopathic agents. International Journal of Biological Chemistry, 5, 86–90.

    Article  CAS  Google Scholar 

  • Riveron, J. M., Ibrahim, S. S., Chanda, E., Mzilahowa, T., Cuamba, N., Irving, H., Barnes, K. G., Ndula, M., & Wondji, C. S. (2014). The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa. BMC Genomics, 15, 817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenthal, G. A. & Berenbaum, M. R. (2012). Herbivores, Their interactions with secondary plant metabolites, Ecological and Evolutionary Processes, Academic Press.

  • Rupasinghe, S. G., Wen, Z., Chiu, T.-L., & Schuler, M. A. (2007). Helicoverpa zea CYP6B8 and CYP321A1, different molecular solutions to the problem of metabolizing plant toxins and insecticides. Protein Engineering Design and Selection, 20, 615–624.

    Article  CAS  Google Scholar 

  • Salunke, B., Kotkar, H., Mendki, P., Upasani, S., & Maheshwari, V. (2005). Efficacy of flavonoids in controlling Callosobruchus chinensis (L.)(Coleoptera, Bruchidae), a post-harvest pest of grain legumes. Crop Protection, 24, 888–893.

    Article  CAS  Google Scholar 

  • Sasabe, M., Wen, Z., Berenbaum, M. R., & Schuler, M. A. (2004). Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene, 338, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, M. A. (2012). Insect P450s, mounted for battle in their war against toxins. Molecular Ecology, 21, 4157–4159.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, M. A., & Berenbaum, M. R. (2013). Structure and function of cytochrome P450S in insect adaptation to natural and synthetic toxins, Insights gained from molecular modeling. Journal of Chemical Ecology, 39, 1232–1245.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, T. H., Poppy, G. M., Kerry, B. R., & Denholm, I. (1998). Insect-resistant transgenic plants. Trends in Biotechnology, 16, 168–175.

    Article  CAS  Google Scholar 

  • Scott, J. G. (1999). Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29, 757–777.

    Article  CAS  PubMed  Google Scholar 

  • Scott, J. G., Liu, N., & Wen, Z. (1998). Insect cytochromes P450, diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology Part C: Pharmacology Toxicology and Endocrinology, 121, 147–155.

    CAS  Google Scholar 

  • Shi, W., Luo, S., & Li, S. (2012). Defensive sesquiterpenoids from leaves of Eupatorium adenophorum. Chinese Journal of Chemistry, 30, 1331–1334.

    Article  CAS  Google Scholar 

  • Siegwart, M., Graillot, B., Lopez, C. B., Besse, S., Bardin, M., Nicot, P. C. & Lopez-Ferber, M. (2015). Resistance to bio-insecticides or how to enhance their sustainability, a review. Frontiers in plant science 6.

  • Silva, A. X., Jander, G., Samaniego, H., Ramsey, J. S., & Figueroa, C. C. (2012). Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera, Aphididae) I, a transcriptomic survey. PloS One, 7, e36366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmonds, M. S. (2003). Flavonoid–insect interactions, recent advances in our knowledge. Phytochemistry, 64, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland, T., Unnithan, G., Andersen, J., Evans, P., Murataliev, M., Szabo, L., Mash, E., Bowers, W., & Feyereisen, R. (1998). A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proceedings of the National Academy of Sciences, 95, 12884–12889.

    Article  CAS  Google Scholar 

  • Takeshita, A., Taguchi, M., Koibuchi, N., & Ozawa, Y. (2002). Putative role of the orphan nuclear receptor SXR (steroid and xenobiotic receptor) in the mechanism of CYP3A4 inhibition by xenobiotics. Journal of Biological Chemistry, 277, 32453–32458.

    Article  CAS  PubMed  Google Scholar 

  • Tao, X. Y., Xue, X. Y., Huang, Y. P., Chen, X. Y., & Mao, Y. B. (2012). Gossypol‐enhanced P450 gene pool contributes to cotton bollworm tolerance to a pyrethroid insecticide. Molecular Ecology, 21, 4371–4385.

    Article  CAS  PubMed  Google Scholar 

  • Ussuf, K., Laxmi, N., & Mitra, R. (2001). Proteinase inhibitors: plant-derived genes of insecticidal protein for developing insect-resistant transgenic plants. Current Science (Bangalore), 80(7), 847–853.

    CAS  Google Scholar 

  • Vandenborre, G., Smagghe, G., & Van Damme, E. J. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72(13), 1538–1550.

    Article  CAS  PubMed  Google Scholar 

  • Vandock, K. P., Mitchell, J., & Fioravanti, C. F. (2012). Effects of plant flavonoids on manduca sexta (tobacco hornworm) fifth larval instar midgut and fat body mitochondrial transhydrogenase. Archives of Insect Biochemistry and Physiology, 80, 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Wang, Y., Chen, Z.-y., Chan, F. L., & Leung, L. K. (2005). Hydroxychalcones exhibit differential effects on XRE transactivation. Toxicology, 207, 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Shahzad, M. F., Zhang, Z., Sun, H., Han, P., Li, F., & Han, Z. (2014). Genome-wide analysis reveals the expansion of Cytochrome P450 genes associated with xenobiotic metabolism in rice striped stem borer, Chilo suppressalis. Biochemical and Biophysical Research Communications, 443, 756–760.

    Article  CAS  PubMed  Google Scholar 

  • Willoughby, L., Chung, H., Lumb, C., Robin, C., Batterham, P., & Daborn, P. J. (2006). A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochemistry and Molecular Biology, 36, 934–942.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., Yang, H., & He, G. (2007). Cloning and characterization of two cytochrome P450 CYP6AX1 and CYP6AY1 cDNAs from Nilaparvata lugens Stål (Homoptera, Delphacidae). Archives of Insect Biochemistry and Physiology, 64, 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Zangerl, A. R., Liao, L.-H., Jogesh, T., & Berenbaum, M. R. (2012). Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella). Journal of Chemical Ecology, 38, 188–94.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Z., Zhou, Z., Wei, Z., Chen, S., & You, M. (2007). Toxicity of five insecticides on predatory mite (Anystis baccarum L.) and their effects on predation to tea leafhopper (Empoasca vitis Göthe). Journal of Tea Science, 27, 147–152.

    CAS  Google Scholar 

  • Zhang, X., Zhang, J., & Zhu, K. (2011). Advances and Prospects of RNAi Technologies in Insect Pest Management. Recent Advances in Entomological Research, From Molecular Biology to Pest Management. Berlin, German: Springer Berlin Heidelberg.

    Google Scholar 

  • Zhang, X., Liu, X., Ma, J., & Zhao, J. (2013). Silencing of cytochrome P450 CYP6B6 gene of cotton bollworm (Helicoverpa armigera) by RNAi. Bulletin of Entomological Research, 103, 584–591.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Wong, A., Zhang, Y., Ni, X. & Li, X. (2014). Common and unique cis-acting elements mediate xanthotoxin and flavone induction of the generalist P450 CYP321A1. Scientific reports 4.

  • Zhu-Salzman, K., & Zeng, R. (2015). Insect Response to Plant Defensive Protease Inhibitors. Annual Review of Entomology, 60, 233–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their critical comments. The work supported by grants from SJTU 985-III disciplines platform and talent funds (grant no. TS0320215002), the National Natural Science Foundation of China (grant no. 31401703) and SJTU startup foundation for new young faculty (grant no. 14X100040073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Wang, L., Ma, L. et al. P450-mediated detoxification of botanicals in insects. Phytoparasitica 44, 585–599 (2016). https://doi.org/10.1007/s12600-016-0550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-016-0550-1

Keywords

Navigation