Skip to main content
Log in

Application of sugar beet vinasse followed by solarization reduces the incidence of Meloidogyne incognita in pepper crops while improving soil quality

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The application of organic amendments followed by solarization is a promising alternative to chemical disinfestation for the control of soilborne pathogens in protected crops. We assessed the effectiveness of the application of sugar beet vinasse, alone and in combination with fresh sheep manure, followed by solarization on (i) disease incidence of Meloidogyne incognita in protected pepper crops of southeast Spain and (ii) soil properties with potential as indicators of soil quality. When treatments were applied in summer, a 97% and 87% reduction in the galling index and percentage of galled plants, respectively, was observed in vinasse-amendment plots at the end of the crop season, compared with untreated controls. Treatments led to higher values of soil organic C, total N, total P and extractable K+, and lower values of soil pH. Values of enzyme activities (dehydrogenase, β-glucosidase, acid and alkaline phosphatase, arylsulfatase, urease), microbial biomass C, potentially mineralizable N, water soluble organic C and microbial functional diversity were higher in treated versus untreated soils. Positive correlations were found between enzyme activities and microbial biomass C. In general, no differences were observed between vinasse and vinasse+manure treatments. It was concluded that the application of sugar beet vinasse followed by solarization is a good alternative to methyl bromide for the control of M. incognita in protected pepper crops of southeast Spain, especially, but not exclusively, when carried out in summer. Additionally, treatments resulted in an improvement in soil quality, as reflected by the higher values of microbial biomass, activity and functional diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afouda, L., Bairney, H., & Fanou, H. (2008). Evaluation of Amaranthus sp. and Vernonia amygdalina, and soil amendments with poultry manure for the management of root-knot nematodes on eggplant. Phytoparasitica, 36, 368–376.

    Article  Google Scholar 

  • Akhtar, M., & Malik, A. (2000). Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresource Technology, 74, 35–47.

    Article  CAS  Google Scholar 

  • Bridge, J., & Page, S. L. J. (1980). Estimation of root-knot nematodes infestation levels on roots using a rating chart. Tropical Pest Management, 26, 296–298.

    Article  Google Scholar 

  • Dick, R. P. (1997). Soil enzyme activities as integrative indicators of soil health. (pp. 121–156). In C. E. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health. Wallingford: CAB International.

    Google Scholar 

  • Epelde, L., Becerril, J. M., Barrutia, O., González-Oreja, J. A., & Garbisu, C. (2010). Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environmental Pollution, 158, 1576–1583.

    Article  PubMed  CAS  Google Scholar 

  • Epelde, L., Becerril, J. M., Hernández-Allica, J., Barrutia, O., & Garbisu, C. (2008). Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Applied Soil Ecology, 39, 299–310.

    Article  Google Scholar 

  • Etxeberria, A., Mendarte, S., & Larregla, S. (2011). Thermal inactivation of Phytophthora capsici oospores. Revista Iberoamerica de Micología, 28, 83–90.

    Article  Google Scholar 

  • Frąc, M., Oszust, K., & Lipiec, J. (2012). Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors, 12, 3253–3268.

    Article  PubMed  Google Scholar 

  • Gelsomino, A., Badalucco, L., Landi, L., & Cacco, G. (2006). Soil carbon, nitrogen and phosphorus dynamics as affected by solarization alone or combined with organic amendments. Plant and Soil, 279, 307–325.

    Article  CAS  Google Scholar 

  • Gruenzweig, J. M., Rabinowitch, H. D., & Katan, J. (1993). Physiological and developmental aspects of increased plant growth in solarized soils. Annals of Applied Biology, 122, 579–591.

    Article  Google Scholar 

  • Guerrero, M. M., Ros, C., Martínez, M. A., Martínez, M. C., Bello, A., & Lacasa, A. (2006). Biofumigation vs biofumigation plus solarization to control Meloidogyne incognita in sweet pepper. In C. Castañé, & J. A. Sánchez (Eds.), Proceedings of the Meeting at Murcia (Spain), Working Group ‘Integrated Control in Protected Crops, Mediterranean Climate’. IOBC-WPRS Bulletin, 29, 313–318.

    Google Scholar 

  • Harch, B. D., Raymond, L. C., Meech, W., Kirkby, C. A., & Pankhurst, C. E. (1997). Using the Gini coefficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods, 30, 91–101.

    Article  CAS  Google Scholar 

  • Hernández-Allica, J., Becerril, J. M., Zárate, O., & Garbisu, C. (2006). Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281, 147–158.

    Article  Google Scholar 

  • Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68–72.

    Article  CAS  Google Scholar 

  • Klose, S., & Ajwa, H. A. (2004). Enzyme activities in agricultural soils fumigated with methyl bromide alternatives. Soil Biology and Biochemistry, 36, 1625–1635.

    Article  CAS  Google Scholar 

  • Lacasa, C. M., Guerrero, M. M., Ros, C., Martínez, V., Lacasa, A., Fernández, P., et al. (2010). Efficacy of biosolarization with sugar beet vinasses for soil disinfestation in pepper greenhouses. Proceedings of the 9th International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation. Acta Horticulturae, 883, 345–352.

    Google Scholar 

  • Larkin, R. P., & Honeycutt, C. W. (2006). Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology, 96, 68–79.

    Article  PubMed  Google Scholar 

  • Liu, B., Tu, C., Hu, S., Gumpertz, M. L., & Ristaino, J. B. (2007). Effect of sustainable and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Applied Soil Ecology, 37, 202–214.

    Article  Google Scholar 

  • MAPA (1994). Métodos Oficiales de Análisis de Suelos y Aguas para Riego. Métodos Oficiales de Análisis, Vol. 3. Madrid, Spain: Ministerio de Agricultura, Pesca y Alimentación.

  • Martínez, M. A., Martínez, M. C., Bielza, P., Tello, J., & Lacasa, A. (2011). Effect of biofumigation with manure amendments and repeated biosolarization on Fusarium densities in pepper crops. Journal of Industrial Microbiology and Biotechnology, 38, 3–11.

    Article  PubMed  Google Scholar 

  • Mijangos, I., Pérez, R., Albizu, I., & Garbisu, C. (2006). Effects of fertilization and tillage on soil biological properties. Enzyme and Microbial Technology, 40, 100–106.

    Article  CAS  Google Scholar 

  • Miller, L. G., Connell, T. L., Guidetti, J. R., & Oremland, R. S. (1997). Bacterial oxidation of methyl bromide in fumigated soils. Applied and Environmental Microbiology, 63, 4346–4354.

    PubMed  CAS  Google Scholar 

  • National Research Council. (1968). Plant resistance. In C. E Palm, W. W. Dykstra, G. R. Ferguson, Others & Subcommittee on Plant Pathogens, National Research Council (Eds.), Principles of plant and animal pest control, Vol. 4: Control of plant-parasitic nematodes (pp. 113–122). Washington, DC: National Academy of Sciences.

  • Oka, Y. (2010). Mechanisms of nematode suppression by organic soil amendments: a review. Applied Soil Ecology, 44, 101–115.

    Article  Google Scholar 

  • Oka, Y., Shapira, N., & Fine, P. (2007). Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Protection, 26, 1556–1565.

    Article  Google Scholar 

  • Patricio, F. R. A., Sinigagli, C., Barros, B. C., Freitas, C. C., Tessarioli Neto, G., Cantarella, H., et al. (2006). Solarization and fungicides for the control of drop, bottom rot and weeds in lettuce. Crop Protection, 25, 31–38.

    Google Scholar 

  • Powers, R. F. (1980). Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Science Society of America Journal, 44, 1314–1320.

    Article  Google Scholar 

  • Rasche, M. E., Hyman, M. R., & Arp, D. J. (1990). Biodegradation of halogenated hydrocarbons fumigants by nitrifying bacteria. Applied Environmetal Microbiology, 56, 2568–2571.

    CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. US Department of Agriculture Handbook 60. Washington, DC: USDA Government Printing Office.

  • Rodríguez-Loinaz, G., Onaindia, M., Amezaga, I., Mijangos, I., & Garbisu, C. (2008). Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology and Biochemistry, 40, 49–60.

    Article  Google Scholar 

  • Ros, M., García, C., Hernández, M. T., Lacasa, A., Fernández, P., & Pascual, J. A. (2008a). Effects of biosolarization as methyl bromide alternative to Meloidogyne incognita control on quality of soil under pepper. Biology and Fertility of Soils, 45, 37–44.

    Article  Google Scholar 

  • Ros, C., Guerrero, M. M., Lacasa, C. M., Martínez, V., Díez, M. A., Cano, A., et al. (2008b). Combinación de biosolarización o solarización con injerto para el control de Meloidogyne en pimiento de invernadero. In J. M. Egea Fernández & V. Gonzálvez Pérez (Eds.), Actas VIII Congreso Nacional de la Sociedad Española de Agricultura Ecológica. Catarroja, Spain: Sociedad Española de Agricultura Ecológica.

  • Santos, M., Diánez, F., de Cara, M., & Tello, J. C. (2008). Possibilities of the use of vinasses in the control of fungi phytopathogens. Bioresource Technology, 99, 9040–9043.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui, Z. A., & Akhtar, M. S. (2008). Effects of organic wastes, Glomus intraradices and Pseudomonas putida on the growth of tomato and on the reproduction of the root-knot nematode Meloidogyne incognita. Phytoparasitica, 36, 460–471.

    Article  Google Scholar 

  • Stapleton, J. J. (2000). Soil solarization in various agricultural production systems. Crop Protection, 19, 837–841.

    Article  Google Scholar 

  • Stapleton, J. J., Quick, J., & De Vay, J. E. (1985). Soil solarization: effects on soil properties, crop fertilization and plant growth. Soil Biology and Biochemistry, 17, 369–373.

    Article  CAS  Google Scholar 

  • Stapleton, J. J., Summers, C. G., Mitchell, J. P., & Prather, T. S. (2010). Deleterious activity of cultivated grasses (Poaceae) and residues on soilborne fungal, nematode and weed pests. Phytoparasitica, 38, 61–69.

    Article  Google Scholar 

  • Taylor, J. P., Wilson, B., Mills, M. S., & Burns, R. G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34, 387–401.

    Article  CAS  Google Scholar 

  • Tejada, M., & Gonzalez, J. L. (2005). Beet vinasse applied to wheat under dryland conditions affects soil properties and yield. European Journal of Agronomy, 23, 336–347.

    Article  Google Scholar 

  • Tejada, M., González, J. L., García-Martínez, A. M., & Parrado, J. (2008). Application of green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresource Technology, 99, 4949–4957.

    Article  PubMed  CAS  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Institute for Agricultural and Food Research and Technology (INIA) of the Spanish Ministry of Science and Innovation (projects RTA-2008-00058-C03 and RTA 2011-00005-C03) and by the Department of Environment, Territorial Planning, Agriculture and Fisheries of the Basque Government (project CIPASAPI and BIOSOL). Mireia Núñez-Zofío was the recipient of a fellowship from INIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Larregla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez-Zofío, M., Larregla, S., Garbisu, C. et al. Application of sugar beet vinasse followed by solarization reduces the incidence of Meloidogyne incognita in pepper crops while improving soil quality. Phytoparasitica 41, 181–191 (2013). https://doi.org/10.1007/s12600-012-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-012-0277-6

Keywords

Navigation