Skip to main content

Advertisement

Log in

Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal-based nanomaterials have a wide range of applications in energy conversion, catalysis, bioimaging, and sensors. In our review, we mainly introduce metal nanomaterials-based electrochemical impedance spectroscopy (EIS) biosensors in medical healthcare, environmental monitoring, and food safety instructively, with collecting and analyzing the current achievement of predecessors. In general, metal nanomaterials-based EIS biosensors can be divided into four components, in which bioreceptors and metal nanomaterials transducers are vital for designs. Bioreceptors and metal nanomaterials determine the feasibility, specificity, sensitivity and simplicity of manufacturing and operations. With the demonstration and discussion of bioreceptors and metal nanomaterials of biosensors in different fields, our review aims to assist brief acknowledgement of current state-of-the-art achievement and provide our insights for the future development.

Graphical abstract

摘要

金属基纳米材料在能量转换、催化、生物成像和传感器等领域有着广泛的应用。 在我们的综述中,我们主要介绍 了基于金属纳米材料的电化学阻抗谱(EIS)生物传感器在医疗保健、环境监测和食品安全方面的应用,并收集 和分析了前人目前的成果。 一般来说,基于金属纳米材料的 EIS 生物传感器可分为四个部分,其中生物受体和 金属纳米材料换能器对设计至关重要。 生物受体和金属纳米材料决定了制造和操作的可行性、特异性、敏感性和 简单性。 通过对生物受体和生物传感器金属纳米材料在不同领域的演示和讨论,我们的综述旨在帮助简要了解 当前的成就并激发未来的巨大创新。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [23]. Copyright 2015, Royal Society of Chemistry. b Hair-pin structure change of aptamers, where IFN-γ is interferon. Reproduced with permission from Ref. [28]. Copyright 2010, American Chemical Society. c Structure change of MBs, where dNTP is deoxynucleotides and ICSDPR is isothermal circular strand displacement polymerization reaction. Reproduced with permission from Ref. [33]. Copyright 2021, Elsevier B.V

Fig. 3

Reproduced with permission from Ref. [41]. Copyright 2019, MDPI. b Demonstration of receptor-based biosensors, where pTBS is electrically-conducting poly[toluidine blue]. Reproduced with permission from Ref. [45]. Copyright 2020, Elsevier B.V. c Example of receptor-based biosensors. Reproduced with permission from Ref. [51]. Copyright 2018, Elsevier B.V. d Structures of a peptide-based biosensor, where SAM is self-assembly monolayer. Reproduced with permission from Ref. [58]. Copyright 2018, Elsevier B.V

Fig. 4

Reproduced with permission from Ref. [63]. Copyright 2016, Portland Press LTD. b Different types and their structures of glycolipids. Reproduced with permission from Ref. [64]. Copyright 2017, Springer Science Business Media, LLC. c Lectin–carbohydrate interactions. Reproduced with permission from Ref. [65]. Copyright 2019, Elsevier Inc. d Liposomes and lipid bilayers in biosensors. Reproduced with permission from Ref. [70]. Copyright 2017, Elsevier B.V

Fig. 5

Reproduced with permission from Ref. [74]. Copyright, 2019 Elsevier B.V

Fig. 6

Reproduced with permission from Ref. [95]. Copyright 2019, MDPI

Fig. 7

Reproduced with permission from Ref. [114]. Copyright 2018, Springer-Verlag GmbH Austria, part of Springer Nature

Similar content being viewed by others

References

  1. Hao N, Lu J, Zhou Z, Hua R, Wang K. A pH-resolved colorimetric biosensor for simultaneous multiple target detection. ACS Sens. 2018;3:2159. https://doi.org/10.1021/acssensors.8b00717.

    Article  CAS  Google Scholar 

  2. Cennamo N, Zeni L, Tortora P, Regonesi ME, Giusti A, Staiano M, D’Auria S, Varriale A. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment. Talanta. 2018;178:955. https://doi.org/10.1016/j.talanta.2017.10.034.

    Article  CAS  Google Scholar 

  3. Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716. https://doi.org/10.1016/j.talanta.2020.120716.

    Article  CAS  Google Scholar 

  4. Mao K, Zhang H, Yang Z. An integrated biosensor system with mobile health and wastewater-based epidemiology (IBMW) for COVID-19 pandemic. Biosens Bioelectron. 2020;169:112617. https://doi.org/10.1016/j.bios.2020.112617.

    Article  CAS  Google Scholar 

  5. da Silva MKL, Vanzela HC, Defavari LM, Cesarino I. Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sens Actuators B Chem. 2018;277:555. https://doi.org/10.1016/j.snb.2018.09.051.

    Article  CAS  Google Scholar 

  6. Uniyal S, Sharma RK. Technological advancement in electrochemical biosensor based detection of organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron. 2018;116:37. https://doi.org/10.1016/j.bios.2018.05.039.

    Article  CAS  Google Scholar 

  7. Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia Coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens Bioelectron. 2019;124–125:143. https://doi.org/10.1016/j.bios.2018.10.006.

    Article  CAS  Google Scholar 

  8. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology. 2018;16:1. https://doi.org/10.1186/s12951-018-0400-z4.

    Article  Google Scholar 

  9. Su L, Zou L, Fong CC, Wong WL, Wei F, Wong KY, Wu RSS, Yang M. Detection of cancer biomarkers by piezoelectric biosensor using PZT ceramic resonator as the transducer. Biosens Bioelectron. 2013;46:155. https://doi.org/10.1016/j.bios.2013.01.074.

    Article  CAS  Google Scholar 

  10. Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron. 2018;103:113. https://doi.org/10.1016/j.bios.2017.12.031.

    Article  CAS  Google Scholar 

  11. Huang L, Yang L, Zhu CC, Deng H, Liu G, Yuan Y. Methylene blue sensitized photoelectrochemical biosensor with 3,4,9,10-perylene tetracarboxylic acid film as photoelectric material for highly sensitive Pb2+ detection. Sensors Actuators, B Chem. 2018;274:458. https://doi.org/10.1016/j.snb.2018.07.135.

    Article  CAS  Google Scholar 

  12. Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, Lee CS, Jun S, Park D, Kim HG, Kim SJ, Lee JO, Kim BT, Park EC, Il Kim S. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135. https://doi.org/10.1021/acsnano.0c02823.

    Article  CAS  Google Scholar 

  13. Han Y, Chen J, Li Z, Chen H, Qiu H. Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron. 2020;148:111811. https://doi.org/10.1016/j.bios.2019.111811.

    Article  CAS  Google Scholar 

  14. Negahdary M, Heli H. An electrochemical peptide-based biosensor for the alzheimer biomarker amyloid-β(1–42) using a microporous gold nanostructure. Microchim Acta. 2019;186:1. https://doi.org/10.1007/s00604-019-3903-x.

    Article  CAS  Google Scholar 

  15. Xuan X, Kim JY, Hui X, Das PS, Yoon HS, Park JY. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens Bioelectron. 2018;120:160. https://doi.org/10.1016/j.bios.2018.07.071.

    Article  CAS  Google Scholar 

  16. Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Tuning atomically dispersed Fe sites in metal–organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano-Micro Lett. 2020;12:1. https://doi.org/10.1007/s40820-020-00520-3.

    Article  CAS  Google Scholar 

  17. Cui S, Gu S, Ding Y, Zhang J, Zhang Z, Hu Z. Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: a novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell. Talanta. 2018;178:788. https://doi.org/10.1016/j.talanta.2017.09.074.

    Article  CAS  Google Scholar 

  18. Randviir EP, Banks CE. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods. 2013;5:1098. https://doi.org/10.1039/c3ay26476a.

    Article  CAS  Google Scholar 

  19. Chang BY, Park SM. Electrochemical impedance spectroscopy. Annu Rev Anal Chem. 2010;3:207. https://doi.org/10.1146/annurev.anchem.012809.102211.

    Article  CAS  Google Scholar 

  20. Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, Jiang J, Liu GL, Liu Q. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators, B Chem. 2016;222:994. https://doi.org/10.1016/j.snb.2015.09.041.

    Article  CAS  Google Scholar 

  21. Bahner N, Reich P, Frense D, Menger M, Schieke K, Beckmann D. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem. 2018;410:1453. https://doi.org/10.1007/s00216-017-0786-8.

    Article  CAS  Google Scholar 

  22. Yu L, Zhang Y, Hu C, Wu H, Yang Y, Huang C, Jia N. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1 in olive oil. Food Chem. 2015;176:22. https://doi.org/10.1016/j.foodchem.2014.12.030.

    Article  CAS  Google Scholar 

  23. Yang Z, Kasprzyk-Hordern B, Goggins S, Frost CG, Estrela P. A Novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst. 2015;140:2628. https://doi.org/10.1039/c4an02277g.

    Article  CAS  Google Scholar 

  24. Xu S, Zhang Y, Dong K, Wen J, Zheng C, Zhao S. Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia Coli O157:H7. Int J Electrochem Sci. 2017;12:3443. https://doi.org/10.20964/2017.04.16.

    Article  CAS  Google Scholar 

  25. Cai W, Xie S, Zhang J, Tang D, Tang Y. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction. Biosens Bioelectron. 2017;98:466. https://doi.org/10.1016/j.bios.2017.07.025.

    Article  CAS  Google Scholar 

  26. Chen CC, Lai ZL, Wang GJ, Wu CY. Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor. Biosens Bioelectron. 2016;77:603. https://doi.org/10.1016/j.bios.2015.10.028.

    Article  CAS  Google Scholar 

  27. Zhou W, Jimmy Huang PJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014;139:2627. https://doi.org/10.1039/c4an00132j.

    Article  CAS  Google Scholar 

  28. Liu Y, Tuleouva N, Ramanculov E, Revzin A. Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem. 2010;82:8131. https://doi.org/10.1021/ac101409t.

    Article  CAS  Google Scholar 

  29. Tan F, Cong L, Saucedo NM, Gao J, Li X, Mulchandani A. An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg2+ ion in water samples. J Hazard Mater. 2016;320:226. https://doi.org/10.1016/j.jhazmat.2016.08.029.

    Article  CAS  Google Scholar 

  30. Ensafi AA, Khoddami E, Rezaei B. Aptamer@Au-o-phenylenediamine modified pencil graphite electrode: a new selective electrochemical impedance biosensor for the determination of insulin. Colloids Surfaces B Biointerfaces. 2017;159:47. https://doi.org/10.1016/j.colsurfb.2017.07.076.

    Article  CAS  Google Scholar 

  31. Istamboulié G, Paniel N, Zara L, Granados LR, Barthelmebs L, Noguer T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta. 2016;146:464. https://doi.org/10.1016/j.talanta.2015.09.012.

    Article  CAS  Google Scholar 

  32. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303. https://doi.org/10.1038/nbt0396-303.

    Article  CAS  Google Scholar 

  33. Zhang Z, Zhang L, Wang Y, Yao J, Wang T, Weng Z, Yang L, Xie G. Ultrasensitive electrochemical biosensor for attomolar level detection of let 7a based on toehold mediated strand displacement reaction circuits and molecular beacon mediated circular strand displacement polymerization. Anal Chim Acta. 2021;1147:108. https://doi.org/10.1016/j.aca.2020.12.057.

    Article  CAS  Google Scholar 

  34. Tortolini C, Bollella P, Antonelli ml, Antiochia R, Mazzei F, Favero G. DNA-ased biosensors for Hg2+ determination by polythymine-methylene blue modified electrodes. Biosens Bioelectron. 2015;67:524. https://doi.org/10.1016/j.bios.2014.09.031.

    Article  CAS  Google Scholar 

  35. Wang X, Dong P, Yun W, Xu Y, He P, Fang Y. A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens Bioelectron. 2009;24:3288. https://doi.org/10.1016/j.bios.2009.04.019.

    Article  CAS  Google Scholar 

  36. Fang X, Jiang W, Han X, Zhang Y. Molecular beacon based biosensor for the sequence-specific detection of DNA using DNA-capped gold nanoparticles-streptavidin conjugates for signal amplification. Microchim Acta. 2013;180:1271. https://doi.org/10.1007/s00604-013-1044-1.

    Article  CAS  Google Scholar 

  37. Zhan F, Liao X, Gao F, Qiu W, Wang Q. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35S. Biosens Bioelectron. 2017;92:589. https://doi.org/10.1016/j.bios.2016.10.055.

    Article  CAS  Google Scholar 

  38. Li B, Li Z, Situ B, Dai Z, Liu Q, Wang Q, Gu D, Zheng L. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode. Biosens Bioelectron. 2014;52:330. https://doi.org/10.1016/j.bios.2013.09.016.

    Article  CAS  Google Scholar 

  39. He X, Ni X, Wang Y, Wang K, Jian L. Electrochemical detection of nicotinamide adenine dinucleotide based on molecular beacon-like DNA and E. Coli DNA ligase Talanta. 2011;83:937. https://doi.org/10.1016/j.talanta.2010.10.051.

  40. Xiong E, Wu L, Zhou J, Yu P, Zhang X, Chen J. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure. Anal Chim Acta. 2015;853:242. https://doi.org/10.1016/j.aca.2014.10.015.

    Article  CAS  Google Scholar 

  41. Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized enzymes in biosensor applications. Materials (Basel). 2019;12:121. https://doi.org/10.3390/ma12010121.

    Article  CAS  Google Scholar 

  42. Bouyahia N, Hamlaoui ml, Hnaien M, Lagarde F, Jaffrezic-Renault N. Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor. Bioelectrochemistry. 2011;80:155. https://doi.org/10.1016/j.bioelechem.2010.07.006.

    Article  CAS  Google Scholar 

  43. Mayorga Martinez CC, Treo EF, Madrid RE, Felice CC. Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor. Biosens Bioelectron. 2011;29:200. https://doi.org/10.1016/j.bios.2011.08.018.

    Article  CAS  Google Scholar 

  44. Sundararam M, Janakiraman K, Kumar AS, Lakshminarayanan V, Sankaran K. Ac impedance measurement for the enzyme kinetics of urea–urease system: a model for impedimetric biosensor. Bull Mater Sci. 2020;43:77. https://doi.org/10.1007/s12034-020-2055-2.

    Article  CAS  Google Scholar 

  45. Abbasy L, Mohammadzadeh A, Hasanzadeh M, Razmi N. Development of a reliable bioanalytical method based on prostate specific antigen trapping on the cavity of molecular imprinted polymer towards sensing of PSA using binding affinity of PSA-MIP receptor: a novel biosensor. J Pharm Biomed Anal. 2020;188:113447. https://doi.org/10.1016/j.jpba.2020.113447.

    Article  CAS  Google Scholar 

  46. Furst AL, Francis MB. Impedance-based detection of bacteria. Chem Rev. 2019;119:700. https://doi.org/10.1021/acs.chemrev.8b00381.

    Article  CAS  Google Scholar 

  47. Khadka R, Aydemir N, Carraher C, Hamiaux C, Colbert D, Cheema J, Malmström J, Kralicek A, Travas-Sejdic J. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens Bioelectron. 2019;126:207. https://doi.org/10.1016/j.bios.2018.10.043.

    Article  CAS  Google Scholar 

  48. Doornbos mlJ, Van der Linden I, Vereyken L, Tresadern G, Ijzerman AP, Lavreysen H, Heitman LH. Constitutive activity of the metabotropic glutamate receptor 2 explored with a whole-cell label-free biosensor. Biochem Pharmacol. 2018;152:201. https://doi.org/10.1016/j.bcp.2018.03.026.

    Article  CAS  Google Scholar 

  49. Mayall RM, Renaud-Young M, Chan NWC, Birss VI. An electrochemical lipopolysaccharide sensor based on an immobilized toll-like receptor-4. Biosens Bioelectron. 2017;87:794. https://doi.org/10.1016/j.bios.2016.09.009.

    Article  CAS  Google Scholar 

  50. Chambers JP, Arulanandam BP, Matta LL, Weis A, Valdes JJ. Biosensor recognition elements. Curr Issues Mol Biol. 2008;10:1. https://doi.org/10.21775/cimb.010.001.

    Article  CAS  Google Scholar 

  51. Cabral-Miranda G, Cardoso AR, Ferreira LCS, Sales MGF, Bachmann MF. Biosensor-based selective detection of zika virus specific antibodies in infected individuals. Biosens Bioelectron. 2018;113:101. https://doi.org/10.1016/j.bios.2018.04.058.

    Article  CAS  Google Scholar 

  52. Tubía I, Paredes J, Pérez-Lorenzo E, Arana S. Antibody biosensors for spoilage yeast detection based on impedance spectroscopy. Biosens Bioelectron. 2018;102:432. https://doi.org/10.1016/j.bios.2017.11.057.

    Article  CAS  Google Scholar 

  53. Nidzworski D, Siuzdak K, Niedziałkowski P, Bogdanowicz R, Sobaszek M, Ryl J, Weiher P, Sawczak M, Wnuk E, Goddard WA, Jaramillo-Botero A, Ossowski T. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep. 2017;7:1. https://doi.org/10.1038/s41598-017-15806-7.

    Article  CAS  Google Scholar 

  54. Jacobs M, Nagaraj VJ, Mertz T, Selvam AP, Ngo T, Prasad S. An electrochemical sensor for the detection of antibiotic contaminants in water. Anal Methods. 2013;5:4325. https://doi.org/10.1039/c3ay40994e.

    Article  CAS  Google Scholar 

  55. Giang H, Pali M, Fan L, Suni II. Impedance biosensing atop MoS2 thin films with Mo−S bond formation to antibody fragments created by disulphide bond reduction. Electroanalysis. 2019;31:957. https://doi.org/10.1002/elan.201800845.

  56. Li J, Wang J, Grewal YS, Howard CB, Raftery LJ, Mahler S, Wang Y, Trau M. Multiplexed sers detection of soluble cancer protein biomarkers with gold-silver alloy nanoboxes and nanoyeast single-chain variable fragments. Anal Chem. 2018;90:10377. https://doi.org/10.1021/acs.analchem.8b02216.

    Article  CAS  Google Scholar 

  57. Furst AL, Hoepker AC, Francis MB. Quantifying hormone disruptors with an engineered bacterial biosensor. ACS Cent Sci. 2017;3:110. https://doi.org/10.1021/acscentsci.6b00322.

    Article  CAS  Google Scholar 

  58. Baek SH, Kim MW, Park CY, Choi CS, Kailasa SK, Park JP, Park TJ. Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides. Biosens Bioelectron. 2019;123:223. https://doi.org/10.1016/j.bios.2018.08.064.

    Article  CAS  Google Scholar 

  59. Cho CH, Kim JH, Song DK, Park TJ, Park JP. An affinity peptide-incorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin. Biosens Bioelectron. 2019;142:111482. https://doi.org/10.1016/j.bios.2019.111482.

    Article  CAS  Google Scholar 

  60. Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of salmonella Spp. Food Chem. 2020;325:126868. https://doi.org/10.1016/j.foodchem.2020.126868.

    Article  CAS  Google Scholar 

  61. Shi F, Gan L, Wang Y, Wang P. Impedimetric biosensor fabricated with affinity peptides for sensitive detection of Escherichia Coli O157:H7. Biotechnol Lett. 2020;42:825. https://doi.org/10.1007/s10529-020-02817-0.

    Article  CAS  Google Scholar 

  62. Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115:2045. https://doi.org/10.1021/cr500279h.

    Article  CAS  Google Scholar 

  63. Belický Š, Katrlík J, Tkáč J. Glycan and lectin biosensors. Essays Biochem. 2016;60:37. https://doi.org/10.1042/EBC20150005.

    Article  Google Scholar 

  64. Mnif I, Ellouz-Chaabouni S, Ghribi D. Glycolipid biosurfactants, main classes, functional properties and related potential applications in environmental biotechnology. J Polym Environ. 2018;26:2192. https://doi.org/10.1007/s10924-017-1076-4.

    Article  CAS  Google Scholar 

  65. Silva mlS. Lectin biosensors in cancer glycan biomarker detection. Adv Clin Chem. 2019;93:1. https://doi.org/10.1016/bs.acc.2019.07.001.

    Article  CAS  Google Scholar 

  66. Klukova L, Filip J, Belicky S, Vikartovska A, Tkac J. Graphene oxide-based electrochemical label-free detection of glycoproteins down to AM level using a lectin biosensor. Analyst. 2016;141:4278. https://doi.org/10.1039/c6an00793g.

    Article  CAS  Google Scholar 

  67. Simão EP, Silva DBS, Cordeiro MT, Gil LHV, Andrade CAS, Oliveira MDL. Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta. 2020;208:120338. https://doi.org/10.1016/j.talanta.2019.120338.

    Article  CAS  Google Scholar 

  68. Rangel MGH, Silva mlS. Detection of the cancer-associated T antigen using an arachis hypogaea agglutinin biosensor. Biosens Bioelectron. 2019;141:111401. https://doi.org/10.1016/j.bios.2019.111401.

    Article  CAS  Google Scholar 

  69. Ramkumar R, Mathiselvam M, Sangaranarayanan MV. Thiourea linked glycolipid-assisted synthesis of sub-micrometer sized polyaniline spheres for enzyme less sensing of dopamine. J Appl Electrochem. 2020;50:439. https://doi.org/10.1007/s10800-020-01402-7.

    Article  CAS  Google Scholar 

  70. Mazur F, Bally M, Städler B, Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci. 2017;249:88. https://doi.org/10.1016/j.cis.2017.05.020.

    Article  CAS  Google Scholar 

  71. Khadka R, Carraher C, Hamiaux C, Travas-Sejdic J, Kralicek A. Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of orco. Biosens Bioelectron. 2020;153:112040. https://doi.org/10.1016/j.bios.2020.112040.

    Article  CAS  Google Scholar 

  72. Karutha PD, Venkataraman D. Supported binary liposome vesicle-gold nanoparticle for enhanced label free DNA and protein sensing. Biosens Bioelectron. 2017;95:168. https://doi.org/10.1016/j.bios.2017.04.022.

  73. Gomes FO, Maia LB, Loureiro JA, Pereira MC, Delerue-Matos C, Moura I, Moura JJG, Morais S. Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Bioelectrochemistry. 2019;127:76. https://doi.org/10.1016/j.bioelechem.2019.01.010.

    Article  CAS  Google Scholar 

  74. Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD. Cell-based biosensors: recent trends, challenges and future perspectives. Biosens Bioelectron. 2019;141:111435. https://doi.org/10.1016/j.bios.2019.111435.

    Article  CAS  Google Scholar 

  75. Ye Y, Ji J, Pi F, Yang H, Liu J, Zhang Y, Xia S, Wang J, Xu D, Sun X. A novel electrochemical biosensor for antioxidant evaluation of phloretin based on cell-alginate/L-cysteine/gold nanoparticle-modified glassy carbon electrode. Biosens Bioelectron. 2018;119:119. https://doi.org/10.1016/j.bios.2018.07.051.

    Article  CAS  Google Scholar 

  76. Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, Sun X. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron. 2017;97:345. https://doi.org/10.1016/j.bios.2017.06.002.

    Article  CAS  Google Scholar 

  77. Ge Q, Ge P, Jiang D, Du N, Chen J, Yuan L, Yu H, Xu X, Wu M, Zhang W, Zhou G. A novel and simple cell-based electrochemical biosensor for evaluating the antioxidant capacity of lactobacillus plantarum strains isolated from Chinese dry-cured ham. Biosens Bioelectron. 2018;99:555. https://doi.org/10.1016/j.bios.2017.08.037.

    Article  CAS  Google Scholar 

  78. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater. 2017;324:762. https://doi.org/10.1016/j.jhazmat.2016.11.055.

    Article  CAS  Google Scholar 

  79. Meng F, Shi W, Sun Y, Zhu X, Wu G, Ruan C, Liu X, Ge D. Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detection range. Biosens Bioelectron. 2013;42:141. https://doi.org/10.1016/j.bios.2012.10.051.

    Article  CAS  Google Scholar 

  80. Li Y, Jiang Y, Mo T, Zhou H, Li Y, Li S. Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. J Electroanal Chem. 2016;767:84. https://doi.org/10.1016/j.jelechem.2016.02.016.

    Article  CAS  Google Scholar 

  81. Song Y, Lu X, Li Y, Guo Q, Chen S, Mao L, Hou H, Wang L. Nitrogen-doped carbon nanotubes supported by macroporous carbon as an efficient enzymatic biosensing platform for glucose. Anal Chem. 2016;88:1371. https://doi.org/10.1021/acs.analchem.5b03938.

    Article  CAS  Google Scholar 

  82. Cai ZX, Song XH, Chen YY, Wang YR, Chen X. 3d nitrogen-doped graphene aerogel: a low-cost, facile prepared direct electrode for H2O2 sensing. Sensors Actuators, B Chem. 2016;222:567. https://doi.org/10.1016/j.snb.2015.08.094.

    Article  CAS  Google Scholar 

  83. Wang MQ, Zhang Y, Bao SJ, Yu YN, Ye C. Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim Acta. 2016;190:365. https://doi.org/10.1016/j.electacta.2015.12.199.

    Article  CAS  Google Scholar 

  84. Lin D, Pillai RG, Lee WE, Jemere AB. An impedimetric biosensor for E. Coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G. Microchim Acta. 2019;186:1. https://doi.org/10.1007/s00604-019-3282-3.

    Article  CAS  Google Scholar 

  85. Motia S, Bouchikhi B, Llobet E, El Bari N. Synthesis and characterization of a highly sensitive and selective electrochemical sensor based on molecularly imprinted polymer with gold nanoparticles modified screen-printed electrode for glycerol determination in wastewater. Talanta. 2020;216:120953. https://doi.org/10.1016/j.talanta.2020.120953.

    Article  CAS  Google Scholar 

  86. Tran LT, Tran HV. H Thi Minh Dang, CD Huynh, TA Mai. Silver nanoparticles decorated polyaniline nanowires-based electrochemical DNA sensor: two-step electrochemical synthesis. J Electrochem Soc. 2020;167:087508. https://doi.org/10.1149/1945-7111/ab8fdb.

    Article  CAS  Google Scholar 

  87. Jiménez-Pérez R, Almagro L, González-Sánchez MI, Pedreño MÁ, Valero E. Non-enzymatic screen-printed sensor based on PtNPs@polyazure a for the real-time tracking of the H2O2 secreted from living plant cells. Bioelectrochemistry. 2020;134:107526. https://doi.org/10.1016/j.bioelechem.2020.107526.

    Article  CAS  Google Scholar 

  88. Wang S, Zhao L, Xu R, Ma Y, Ma L. Facile fabrication of biosensors based on Cu nanoparticles modified As-grown CVD graphene for non-enzymatic glucose sensing. J Electroanal Chem. 2019;853:113527. https://doi.org/10.1016/j.jelechem.2019.113527.

    Article  CAS  Google Scholar 

  89. da Silva W, Brett CMA. Novel biosensor for acetylcholine based on acetylcholinesterase/poly(neutral red) – deep eutectic solvent/Fe2O3 nanoparticle modified electrode. J Electroanal Chem. 2020;872:114050. https://doi.org/10.1016/j.jelechem.2020.114050.

    Article  CAS  Google Scholar 

  90. Guan JF, Huang ZN, Zou J, Jiang XY, Peng DM, Yu JG. A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection. Ecotoxicol Environ Saf. 2020;190:110123. https://doi.org/10.1016/j.ecoenv.2019.110123.

    Article  CAS  Google Scholar 

  91. Negahdary M, Jafarzadeh M, Rahimzadeh R, Rahimi G, Dehghani H. A DNA biosensor for molecular diagnosis of aeromonas hydrophila using zinc sulfide nanospheres. J Sensors Sens Syst. 2017;6:259. https://doi.org/10.5194/jsss-6-259-2017.

    Article  Google Scholar 

  92. Xu W, Zhang Y, Yin X, Zhang L, Cao Y, Ni X, Huang W. Highly sensitive electrochemical BPA sensor based on titanium nitride-reduced graphene oxide composite and core-shell molecular imprinting particles. Anal Bioanal Chem. 2021;413:1081. https://doi.org/10.1007/s00216-020-03069-7.

    Article  CAS  Google Scholar 

  93. Lee WC, Kim KB, Gurudatt NG, Hussain KK, Choi CS, Park DS, Shim YB. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens bioelectron. 2019;130:48. https://doi.org/10.1016/j.bios.2019.01.028.

    Article  CAS  Google Scholar 

  94. Song D, Li Q, Lu X, Li Y, Li Y, Wang Y, Gao F. Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant. J Hazard Mater. 2018;357:466. https://doi.org/10.1016/j.jhazmat.2018.06.021.

    Article  CAS  Google Scholar 

  95. Venditti I. Engineered gold-based nanomaterials: morphologies and functionalities in biomedical applications. A mini review Bioengineering. 2019;6:53. https://doi.org/10.3390/bioengineering6020053.

    Article  Google Scholar 

  96. Falagan-Lotsch P, Grzincic EM, Murphy CJ. One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc Natl Acad Sci U S A. 2016;113:13318. https://doi.org/10.1073/pnas.1616400113.

    Article  CAS  Google Scholar 

  97. Rossi A, Donati S, Fontana L, Porcaro F, Battocchio C, Proietti E, Venditti I, Bracci L, Fratoddi I. Negatively charged gold nanoparticles as a dexamethasone carrier: stability in biological media and bioactivity assessment: in vitro. RSC Adv. 2016;6:99016. https://doi.org/10.1039/c6ra19561j.

    Article  CAS  Google Scholar 

  98. Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today. 2011;6:446. https://doi.org/10.1016/j.nantod.2011.08.001.

    Article  CAS  Google Scholar 

  99. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res. 2010;12:2313. https://doi.org/10.1007/s11051-010-9911-8.

    Article  CAS  Google Scholar 

  100. Fratoddi I, Venditti I, Cametti C, Russo MV. The puzzle of toxicity of gold nanoparticles. The case-study of hela cells. Toxicol Res (Camb). 2015;4:796. https://doi.org/10.1039/c4tx00168k.

    Article  CAS  Google Scholar 

  101. Khlebtsov N, Dykmana L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647. https://doi.org/10.1039/c0cs00018c.

    Article  CAS  Google Scholar 

  102. Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology. 2010;4:120. https://doi.org/10.3109/17435390903471463.

    Article  CAS  Google Scholar 

  103. Pingarrón JM, Yáñez-Sedeño P, González-Cortés A. Gold nanoparticle-based electrochemical biosensors. Electrochim Acta. 2008;53:5848. https://doi.org/10.1016/j.electacta.2008.03.005.

  104. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5:3679. https://doi.org/10.1021/nn200007z.

    Article  CAS  Google Scholar 

  105. Wang Y, Sun S, Luo J, Xiong Y, Ming T, Liu J, Ma Y, Yan S, Yang Y, Yang Z, Reboud J, Yin H, Cooper JM, Cai X. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsystems Nanoeng. 2020. https://doi.org/10.1038/s41378-020-0146-2.

    Article  Google Scholar 

  106. Shariati M, Ghorbani M, Sasanpour P, Karimizefreh A. An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Anal Chim Acta. 2019;1048:31. https://doi.org/10.1016/j.aca.2018.09.062.

    Article  CAS  Google Scholar 

  107. Zhuo Y, Yuan R, Chai Y, Zhang Y, Li XL, Zhu Q, Wang N. An amperometric immunosensor based on immobilization of hepatitis B surface antibody on gold electrode modified gold nanoparticles and horseradish peroxidase. Anal Chim Acta. 2005;548:205. https://doi.org/10.1016/j.aca.2005.05.058.

    Article  CAS  Google Scholar 

  108. Khater M, de la Escosura-Muñiz A, Quesada-González D, Merkoçi A. Electrochemical detection of plant virus using gold nanoparticle-modified electrodes. Anal Chim Acta. 2019;1046:123. https://doi.org/10.1016/j.aca.2018.09.031.

    Article  CAS  Google Scholar 

  109. Douaki A, Abera BD, Cantarella G, Shkodra B, Mushtaq A, Ibba P, Inam AKMS, Petti L, Lugli P. Flexible screen printed aptasensor for rapid detection of furaneol: a comparison of CNTs and AgNPs effect on aptasensor performance. Nanomaterials. 2020;10:1. https://doi.org/10.3390/nano10061167.

    Article  CAS  Google Scholar 

  110. Liu YF, Tsai JJ, Chin YT, Liao EC, Wu CC, Wang GJ. Detection of allergies using a silver nanoparticle modified nanostructured biosensor. Sensors Actuators, B Chem. 2012;171–172:1095. https://doi.org/10.1016/j.snb.2012.06.039.

    Article  CAS  Google Scholar 

  111. Gholami M, Koivisto B. A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into nafion. Appl Surf Sci. 2019;467–468:112. https://doi.org/10.1016/j.apsusc.2018.10.113.

    Article  CAS  Google Scholar 

  112. Palve YP, Jha N. A novel bilayer of copper nanowire and carbon nanotube electrode for highly sensitive enzyme free glucose detection. Mater Chem Phys. 2020;240:122086. https://doi.org/10.1016/j.matchemphys.2019.122086.

    Article  CAS  Google Scholar 

  113. Wang F, Hu S, Shi F, Huang K, Li J. A non-enzymatic sensor based on Fc-Chit/CNT@Cu nanohybrids for electrochemical detection of glucose. Polymers (Basel). 2020;12:1. https://doi.org/10.3390/polym12102419.

    Article  CAS  Google Scholar 

  114. George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta. 2018. https://doi.org/10.1007/s00604-018-2894-3.

    Article  Google Scholar 

  115. Li C, Wang Y, Jiang H, Wang X. Biosensors based on advanced sulfur-containing nanomaterials. Sensors (Switzerland). 2020;20:1. https://doi.org/10.3390/s20123488.

    Article  CAS  Google Scholar 

  116. Li X, Liu X. Group III nitride nanomaterials for biosensing. Nanoscale. 2017;9:7320. https://doi.org/10.1039/c7nr01577a.

    Article  CAS  Google Scholar 

  117. Kirste R, Rohrbaugh N, Bryan I, Bryan Z, Collazo R, Ivanisevic A. Electronic biosensors based on III-nitride semiconductors. Annu Rev Anal Chem. 2015;8:149. https://doi.org/10.1146/annurev-anchem-071114-040247.

    Article  CAS  Google Scholar 

  118. Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis. 2004;16:19. https://doi.org/10.1002/elan.200302930.

    Article  CAS  Google Scholar 

  119. Argueta-Figueroa L, Martínez-Alvarez O, Santos-Cruz J, Garcia-Contreras R, Acosta-Torres LS, de la Fuente-Hernández J, Arenas-Arrocena MC. Novel biosensor for acetylcholine based on acetylcholinesterase/poly(neutral red) – deep eutectic solvent/Fe2O3 nanoparticle modified electrode. Mater Sci Eng C. 2017;76:1305. https://doi.org/10.1016/j.msec.2017.02.120.

    Article  CAS  Google Scholar 

  120. Xue L, Guo R, Huang F, Qi W, Liu Y, Cai G, Lin J. An impedance biosensor based on magnetic nanobead net and MnO2 nanoflowers for rapid and sensitive detection of foodborne bacteria. Biosens Bioelectron. 2021;173:112800. https://doi.org/10.1016/j.bios.2020.112800.

    Article  CAS  Google Scholar 

  121. Yu M, Wu L, Miao J, Wei W, Liu A, Liu S. Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of P-nonylphenol. Anal Chim Acta. 2019;1080:84. https://doi.org/10.1016/j.aca.2019.06.053.

    Article  CAS  Google Scholar 

  122. Li G, Zhong P, Ye Y, Wan X, Cai Z, Yang S, Xia Y, Li Q, Liu J, He Q. A highly sensitive and stable dopamine sensor using shuttle-like α-Fe2O3 nanoparticles/electro-reduced graphene oxide composites. J Electrochem Soc. 2019;166:B1552. https://doi.org/10.1149/2.1071915jes.

    Article  CAS  Google Scholar 

  123. Chen TW, Chinnapaiyan S, Chen SM, Hossam Mahmoud A, Elshikh MS, Ebaid H, Taha Yassin M. Facile sonochemical synthesis of rutile-type titanium dioxide microspheres decorated graphene oxide composite for efficient electrochemical sensor. Ultrason Sonochem. 2020;62:104872. https://doi.org/10.1016/j.ultsonch.2019.104872.

    Article  CAS  Google Scholar 

  124. Li J, Liu Y, Tang X, Xu L, Min L, Xue Y, Hu X, Yang Z. Multiwalled carbon nanotubes coated with Cobalt(ii) sulfide nanoparticles for electrochemical sensing of glucose via direct electron transfer to glucose oxidase. Microchim Acta. 2020;187:1. https://doi.org/10.1007/s00604-019-4047-8.

    Article  CAS  Google Scholar 

  125. Govindasamy M, Wang SF, Kumaravel S, Ramalingam RJ, Al-lohedan HA. Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk. Ultrason Sonochem. 2019;52:382. https://doi.org/10.1016/j.ultsonch.2018.12.015.

    Article  CAS  Google Scholar 

  126. Guo Q, Wu T, Liu L, He Y, Liu D, You T. Hierarchically porous NiCo2S4 nanowires anchored on flexible electrospun graphitic nanofiber for high-performance glucose biosensing. J Alloys Compd. 2020;819:153376. https://doi.org/10.1016/j.jallcom.2019.153376.

    Article  CAS  Google Scholar 

  127. Zhou X, Gu X, Chen Z, Wu Y, Xu W, Bao J. A novel and sensitive Cu2ZnSnS4 quantum dot–based non–enzymatic glucose sensor. Sensors Actuators, B Chem. 2021;329:129117. https://doi.org/10.1016/j.snb.2020.129117.

    Article  CAS  Google Scholar 

  128. Poghossian A, Schöning MJ. Capacitive field-effect EIS chemical sensors and biosensors: a status report. Sensors (Switzerland). 2020;20:1. https://doi.org/10.3390/s20195639.

    Article  CAS  Google Scholar 

  129. Liu Q, Yang T, Ye Y, Chen P, Ren X, Rao A, Wan Y, Wang B, Luo Z. A highly sensitive label-free electrochemical immunosensor based on an aligned GaN nanowires array/polydopamine heterointerface modified with Au nanoparticles. J Mater Chem B. 2019;7:1442. https://doi.org/10.1039/c8tb03233e.

    Article  CAS  Google Scholar 

  130. Chen J, Yin H, Zhou J, Gong J, Wang L, Zheng Y, Nie Q. Non-enzymatic glucose sensor based on nickel nitride decorated nitrogen doped carbon spheres (Ni3N/NCS) via facile one pot nitridation process. J Alloys Compd. 2019;797:922. https://doi.org/10.1016/j.jallcom.2019.05.234.

    Article  CAS  Google Scholar 

  131. Rajaji U, Muthumariyappan A, Chen SM, Chen TW, Ramalingam RJ. A novel electrochemical sensor for the detection of oxidative stress and cancer biomarker (4-nitroquinoline N-oxide) based on iron nitride nanoparticles with multilayer reduced graphene nanosheets modified electrode. Sensors Actuators, B Chem. 2019;291:120. https://doi.org/10.1016/j.snb.2019.04.041.

    Article  CAS  Google Scholar 

  132. Sun X, Jiang K, Zhang N, Guo S, Huang X. Crystalline control of 111 bounded Pt3Cu nanocrystals: multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano. 2015;9:7634. https://doi.org/10.1021/acsnano.5b02986.

    Article  CAS  Google Scholar 

  133. Malgras V, Ataee-Esfahani H, Wang H, Jiang B, Li C, Wu KCW, Kim JH, Yamauchi Y. Nanoarchitectures for mesoporous metals. Adv Mater. 2016;28:993. https://doi.org/10.1002/adma.201502593.

    Article  CAS  Google Scholar 

  134. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44:2060. https://doi.org/10.1039/c4cs00470a.

    Article  CAS  Google Scholar 

  135. Cai H, Zhu N, Jiang Y, He P, Fang Y. Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron. 2003;18:1311. https://doi.org/10.1016/S0956-5663(03)00084-8.

    Article  CAS  Google Scholar 

  136. Yadav R, Berlina AN, Zherdev AV, Gaur MS, Dzantiev BB. Rapid and selective electrochemical detection of Pb2+ ions using aptamer-conjugated alloy nanoparticles. SN Appl Sci. 2020;2:1. https://doi.org/10.1007/s42452-020-03840-6.

    Article  CAS  Google Scholar 

  137. Gao A, Zhang X, Peng X, Wu H, Bai L, Jin W, Wu G, Hang R, Chu PK. In situ synthesis of Ni(OH)2/TiO2 composite film on niti alloy for non-enzymatic glucose sensing. Sensors Actuators, B Chem. 2016;232:150. https://doi.org/10.1016/j.snb.2016.03.122.

    Article  CAS  Google Scholar 

  138. Shim K, Lee WC, Park MS, Shahabuddin M, Yamauchi Y, Hossain MSA, Shim YB, Kim JH. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction. Sensors Actuators, B Chem. 2019;278:88. https://doi.org/10.1016/j.snb.2018.09.048.

    Article  CAS  Google Scholar 

  139. Li L, Zheng H, Guo L, Qu L, Yu L. A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta. 2019;197:68. https://doi.org/10.1016/j.talanta.2019.01.009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the National Natural Science Foundation of China (Nos. 51672204 and 22102128) and ZY thanks UK NERC Fellowship Grant (No. NE/R013349/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Ping He.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZB., Jin, HH., Yang, ZG. et al. Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Met. 42, 1098–1117 (2023). https://doi.org/10.1007/s12598-022-02129-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02129-4

Keywords

Navigation