Skip to main content

Advertisement

Log in

Chlorine-rich lithium argyrodites enables superior performances for solid-state Li–Se batteries at wide temperature range

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

All-solid-state Li–Se battery shows great potential as a candidate for next-generation energy storage devices due to its high energy density and safety. However, the low ionic conductivity of the solid electrolytes and large volume changes of Se active materials are two of the major issues that limit its applications. Herein, a simple solid-state reaction method is applied to synthesize chlorine-rich argyrodite Li5.5PS4.5Cl1.5 electrolyte with high conductivity of 6.25 mS·cm−1 at room temperature. Carbon nanotube (CNT) is introduced as the host for Se to obtain Se/CNT composite with both enhanced electronic conductivity and lower volume expansion during the electrochemical reaction process. All-solid-state Li–Se battery using Li5.5PS4.5Cl1.5 as solid electrolyte combined with Se/CNT cathode and Li-In anode shows a discharge capacity of 866 mAh·g−1 for the 2nd cycle under 0.433 mA·cm−2 at room temperature. Moreover, the assembled battery delivers a high discharge capacity of 1026 mAh·g−1 for the 2nd cycle when cycled at the same current density at 60 °C and maintains a discharge capacity of 380 mAh·g−1 after 150 cycles. Owing to the high Li-ion conductivity of Li5.5PS4.5Cl1.5 electrolyte, the assembled battery displays a high discharge capacity of 344 mAh·g−1 under 0.113 mA·cm−2 at − 20 °C and remains 66.1% after 200 cycles. In addition, this all-solid-state Li–Se battery shows ultralong cycling performances up to 1000 cycles under 0.433 mA·cm−2 at − 20 °C. This work offers the design clue to fabricate the all-solid-state Li–Se battery workable at different operating temperatures with an ultralong cycling life.

Graphical abstract

摘要

全固态锂-硒电池具有能量密度高, 安全性好等优点, 在新一代储能设备中具有广泛的应用前景 然而, 固体电解质的离子电导率低和硒活性材料的体积变化大是限制其实用化的两个主要问题. 本文采用简单的固相反应法合成了室温下电导率为 6.25 mS•cm-1 的富氯硫银锗矿 Li5.5PS4.5Cl1.5 电解质. 引入碳纳米管 (Carbon nanotube, CNT) 作为Se的载体, 在电化学反应过程中获得了电子导电性增强和体积膨胀降低的 Se/CNT 复合材料. 以Li5.5PS4.5Cl1.5 为固体电解质, 结合 Se/CNT 阴极和 Li-In 阳极的全固态 Li-Se 电池, 室温下电流密度为 0.433 mA•cm-2 循环时第二次放电容量为 866 mAh•g-1. 在60 °C条件, 在相同电流密度下, 组装后的电池第二次循环放电容量为 1026 mAh•g-1, 循环150次后放电容量保持在380 mAh•g-1. 由于 Li5.5PS4.5Cl1.5 电解液具有较高的锂离子电导率, 在−20 °C 下放电容量为 0.113 mA•g-2, 放电容量为 344 mAh•g-1, 循环200次后放电容量仍为 66.1%. 此外, 该全固态 Li-Se 电池在−20°C下, 在 0.433 mA•cm-2 的温度下显示了 1000次超长循环性能. 这一工作为制备在不同工作温度下具有超长循环寿命的全固态锂硒电池提供了思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, Liu Y, Wang Q, Lv J, Wen J, Chen X, Kang C, Cheng S, McElroy MB. Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling. Joule. 2021;5(10):2715. https://doi.org/10.1016/j.joule.2021.10.006.

    Article  CAS  Google Scholar 

  2. Gong YX, Wang JJ. Solid-state batteries: from fundamental interface characterization to realize sustainable promise. Rare Met. 2020;39(7):743. https://doi.org/10.1007/s12598-020-01429-x.

    Article  CAS  Google Scholar 

  3. Janek J, Zeier WG. A solid future for battery development. Nat Energy. 2016;1(9):2016141. https://doi.org/10.1038/nenergy.2016.141.

    Article  Google Scholar 

  4. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246. https://doi.org/10.1016/j.ensm.2017.05.013.

    Article  Google Scholar 

  5. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc. 2012;134(10):4505. https://doi.org/10.1021/ja211766q.

    Article  CAS  Google Scholar 

  6. Zhao X, Yin L, Zhang T, Zhang M, Fang Z, Wang C, Wei Y, Chen G, Zhang D, Sun Z, Li F. Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li–Se and Na–Se batteries. Nano Energy. 2018;49:137. https://doi.org/10.1016/j.nanoen.2018.04.045.

    Article  CAS  Google Scholar 

  7. Zhou L, Tufail MK, Liao Y, Ahmad N, Yu P, Song T, Chen R, Yang W. Tailored carrier transport path by interpenetrating networks in cathode composite for high performance all-solid-state Li–SeS2 batteries. Adv Fiber Mater. 2022;4(3):487. https://doi.org/10.1007/s42765-021-00123-6.

    Article  CAS  Google Scholar 

  8. Cui Y, Abouimrane A, Sun CJ, Ren Y, Amine K. Li–Se battery: absence of lithium polyselenides in carbonate based electrolyte. Chem Commun. 2014;50(42):5576. https://doi.org/10.1039/C4CC00934G.

    Article  CAS  Google Scholar 

  9. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium–carbon cathode for rechargeable lithium–selenium batteries. 2013;52(32):8363. https://doi.org/10.1002/anie.201303147.

  10. Pang Q, Liang X, Kwok CY, Nazar LF. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. 2016;1(9):2016132. https://doi.org/10.1038/nenergy.2016.132.

    Article  CAS  Google Scholar 

  11. Eftekhari A. The rise of lithium–selenium batteries. Sustain Energy Fuels. 2017;1(1):14. https://doi.org/10.1039/C6SE00094K.

    Article  CAS  Google Scholar 

  12. Zhang W, Zhang Y, Peng L, Li S, Wang X, Cheng S, Xie J. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy. 2020;76: 105083. https://doi.org/10.1016/j.nanoen.2020.105083.

    Article  CAS  Google Scholar 

  13. Li S, Zhang W, Zeng Z, Cheng S, Xie J. Selenium or tellurium as eutectic accelerators for high-performance lithium/sodium–sulfur batteries. Electrochem Energy Rev. 2020;3(3):613. https://doi.org/10.1007/s41918-020-00072-5.

    Article  CAS  Google Scholar 

  14. Ren HT, Zhang ZQ, Zhang JZ, Peng LF, He ZY, Yu M, Yu C, Zhang L, Xie J, Cheng SJ. Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Met. 2022;41(1):106. https://doi.org/10.1007/s12598-021-01804-2.

    Article  CAS  Google Scholar 

  15. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A lithium superionic conductor. Nat Mater. 2011;10(9):682. https://doi.org/10.1038/nmat3066.

    Article  CAS  Google Scholar 

  16. Zhang Z, Zhang J, Jia H, Peng L, An T, Xie J. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. J Power Sourc. 2020;450: 227601. https://doi.org/10.1016/j.jpowsour.2019.227601.

    Article  CAS  Google Scholar 

  17. Wei C, Yu C, Peng L, Zhang Z, Xu R, Wu Z, Liao C, Zhang W, Zhang L, Cheng S, Xie J. Tuning ionic conductivity to enable all-climate solid-state Li–S batteries with superior performances. Mater Adv. 2022;3(2):1047. https://doi.org/10.1039/D1MA00987G.

    Article  CAS  Google Scholar 

  18. Zeng D, Yao J, Zhang L, Xu R, Wang S, Yan X, Yu C, Wang L. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat Commun. 2022;13(1):1909. https://doi.org/10.1038/s41467-022-29596-8.

    Article  CAS  Google Scholar 

  19. Yu C, Zhao F, Luo J, Zhang L, Sun X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: synthesis, structure, stability and dynamics. Nano Energy. 2021;83: 105858. https://doi.org/10.1016/j.nanoen.2021.105858.

    Article  CAS  Google Scholar 

  20. Peng L, Yu C, Zhang Z, Xu R, Sun M, Zhang L, Cheng S, Xie J. Tuning solid interfaces via varying electrolyte distributions enables high performance solid-state batteries. Energy Environ Mater. 2021. https://doi.org/10.1002/eem2.12308.

    Article  Google Scholar 

  21. He ZY, Zhang ZQ, Yu M, Yu C, Ren HT, Zhang JZ, Peng LF, Zhang L, Cheng SJ, Xie J. Synthetic optimization and application of Li-argyrodite Li6PS5I in solid-state battery at different temperatures. Rare Met. 2022;41(3):798. https://doi.org/10.1007/s12598-021-01827-9.

    Article  CAS  Google Scholar 

  22. Peng L, Chen S, Yu C, Liao C, Sun M, Wang HL, Zhang L, Cheng S, Xie J. Unraveling the crystallinity on battery performances of chlorine-rich argyrodite electrolytes. J Power Sources. 2022;520:230890. https://doi.org/10.1016/j.jpowsour.2021.230890.

    Article  CAS  Google Scholar 

  23. Wang S, Zhang W, Chen X, Das D, Ruess R, Gautam A, Walther F, Ohno S, Koerver R, Zhang Q, Zeier WG, Richter FH, Nan CW, Janek J. Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries. Adv Energy Mater. 2021;11(24):2100654. https://doi.org/10.1002/aenm.202100654.

    Article  CAS  Google Scholar 

  24. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew Chem Int Ed. 2013;52(32):8363. https://doi.org/10.1002/anie.201303147.

    Article  CAS  Google Scholar 

  25. Wang M, Guo Y, Wang B, Luo H, Zhang X, Wang Q, Zhang Y, Wu H, Liu H, Dou S. An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li–SeS2 batteries. J Mater Chem A. 2020;8(6):2969. https://doi.org/10.1039/C9TA11124G.

    Article  CAS  Google Scholar 

  26. Adeli P, Bazak JD, Park KH, Kochetkov I, Huq A, Goward GR, Nazar LF. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by Halide substitution. Angew Chem. 2019;58(26):8681. https://doi.org/10.1002/anie.201814222.

    Article  CAS  Google Scholar 

  27. Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci. 2013;6(3):734. https://doi.org/10.1039/C3EE24086J.

    Article  CAS  Google Scholar 

  28. Lau J, DeBlock RH, Butts DM, Ashby DS, Choi CS, Dunn BS. Sulfide solid electrolytes for lithium battery applications. Adv Energy Mater. 2018;8(27):1800933. https://doi.org/10.1002/aenm.201800933.

    Article  CAS  Google Scholar 

  29. Zhao X, Yin L, Yang Z, Chen G, Yue H, Zhang D, Sun Z, Li F. An alkali metal–selenium battery with a wide temperature range and low self-discharge. J Mater Chem A. 2019;7(38):21774. https://doi.org/10.1039/C9TA07630A.

    Article  CAS  Google Scholar 

  30. Peng L, Yu C, Zhang Z, Ren H, Zhang J, He Z, Yu M, Zhang L, Cheng S, Xie J. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chem Eng J. 2022;430: 132896. https://doi.org/10.1016/j.cej.2021.132896.

    Article  CAS  Google Scholar 

  31. Zhang Y, Lu W, Manaig D, Freschi DJ, Liu Y, Xie H, Liu J. Quasi-solid-state lithium-tellurium batteries based on flexible gel polymer electrolytes. J Colloid Interface Sci. 2022;605:547. https://doi.org/10.1016/j.jcis.2021.07.081.

    Article  CAS  Google Scholar 

  32. Yu C, van Eijck L, Ganapathy S, Wagemaker M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta. 2016;215:93. https://doi.org/10.1016/j.electacta.2016.08.081.

    Article  CAS  Google Scholar 

  33. Peng L, Ren H, Zhang J, Chen S, Yu C, Miao X, Zhang Z, He Z, Yu M, Zhang L, Cheng S, Xie J. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Storage Mater. 2021;43:53. https://doi.org/10.1016/j.ensm.2021.08.028.

    Article  Google Scholar 

  34. Peng L, Chen S, Yu C, Wei C, Liao C, Wu Z, Wang HL, Cheng S, Xie J. Enhancing moisture and electrochemical stability of the Li5.5PS4.5Cl1.5 electrolyte by oxygen doping. ACS Appl Mater Interfaces. 2022;14(3):4179. https://doi.org/10.1021/acsami.1c21561.

    Article  CAS  Google Scholar 

  35. Lou S, Liu Q, Zhang F, Liu Q, Yu Z, Mu T, Zhao Y, Borovilas J, Chen Y, Ge M, Xiao X, Lee WK, Yin G, Yang Y, Sun X, Wang J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat Commun. 2020;11(1):5700. https://doi.org/10.1038/s41467-020-19528-9.

    Article  CAS  Google Scholar 

  36. Shi X, Zeng Z, Zhang H, Huang B, Sun M, Wong HH, Lu Q, Luo W, Huang Y, Du Y, Yan CH. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li–Se battery. Small Methods. 2021;5(11):2101002. https://doi.org/10.1002/smtd.202101002.

    Article  CAS  Google Scholar 

  37. Li X, Liang J, Li X, Wang C, Luo J, Li R, Sun X. High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes. Energy Environ Sci. 2018;11(10):2828. https://doi.org/10.1039/C8EE01621F.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program (No. 2021YFB2400300), the National Natural Science Foundation of China (No. 52177214) and the Certificate of China Post-doctoral Science Foundation Grant (No. 2019M652634). We gratefully acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology and South University of Science and Technology of China for us to use the facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuang Yu, Shao-Qing Chen or Jia Xie.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JY., Chen, S., Li, JY. et al. Chlorine-rich lithium argyrodites enables superior performances for solid-state Li–Se batteries at wide temperature range. Rare Met. 41, 4065–4074 (2022). https://doi.org/10.1007/s12598-022-02093-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02093-z

Keywords

Navigation