Skip to main content
Log in

Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

锌离子混合电容器(AZHC)是一种新兴的储能器件。它结合了二次电池和超级电容的优点。然而, 其能量密度和循环能力较低,需要进一步加强。因此, 构建一种可行的阴极材料对提高AZHC的电化学性能至关重要。在本工作中, 我们采用高温炭化策略制备了具有丰富介孔的VO0.9/C微立方。电流密度为0.1 A·g的比容量可达到168 mAh·g-1。 当功率密度为126.5 W·kg-1时, 能量密度为215 Wh·kg-1。此外, 该器件可以保持一个长期的循环寿命, 容量为81 mAh·g-1。所制备的材料表现出丰富的活性位点和较大的比表面积, 有利于提高电化学性能。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Tang H, Yao J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv Energy Mater. 2021;11(14):2003994.

    Article  CAS  Google Scholar 

  2. Wang HW, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093.

    Article  Google Scholar 

  3. Liu Y, Wu X. Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy. 2021;86:106124.

    Article  CAS  Google Scholar 

  4. Liu Q, Zhang H, Xie J, Liu X, Lu X. Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy. 2020;2(4):521.

    Article  CAS  Google Scholar 

  5. Liu C, Wu X, Wang B. Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials. Chem Eng J. 2020;392:123651.

    Article  CAS  Google Scholar 

  6. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409.

    Article  CAS  Google Scholar 

  7. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem. 2019;5(9):2326.

    Article  CAS  Google Scholar 

  8. Liu HQ, Zhao DP, Liu Y, Hu PF, Wu X, Xia H. Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chem Eng J. 2019;373:485.

    Article  CAS  Google Scholar 

  9. Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small. 2020;16(37):2002806.

    Article  CAS  Google Scholar 

  10. Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater. 2017;29(11):1604569.

    Article  Google Scholar 

  11. Wan F, Niu ZQ. Design strategies of vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed. 2019;11(46):16358.

    Article  Google Scholar 

  12. Liu Y, Wu X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. J Energy Chem. 2021;56:223.

    Article  Google Scholar 

  13. Ding J, Hu WB, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118(14):6457.

    Article  CAS  Google Scholar 

  14. Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28(41):1802564.

    Article  Google Scholar 

  15. Li B, Quan J, Loh A, Chai J, Chen Y, Tan C, Ge X, Hor TS, Liu Z, Zhang H, Zong Y. A robust hybrid Zn-battery with ultralong cycle life. Nano Lett. 2017;17(1):156.

    Article  CAS  Google Scholar 

  16. Ma X, Cheng J, Dong L, Liu W, Mou J, Zhao L, Wang J, Ren D, Wu J, Xu C, Kang F. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater. 2019;20:335.

    Article  Google Scholar 

  17. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520(7547):325.

    Article  Google Scholar 

  18. Liu Y, Wu X. Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chin Chem Lett. 2022;33:1236.

    Article  CAS  Google Scholar 

  19. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2021;40(2):309.

    Article  CAS  Google Scholar 

  20. Li Y, Li Z, Shen PK. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater. 2013;25(17):2474.

    Article  CAS  Google Scholar 

  21. Yin J, Zhang WL, Wang WX, Alhebshi NA, Salah N, Alshareef HN. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv Energy Mater. 2020;10(37):2001705.

    Article  CAS  Google Scholar 

  22. Dong L, Ma X, Li Y, Zhao L, Liu W, Cheng J, Xu C, Li B, Yang QH, Kang F. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018;13:96.

    Article  Google Scholar 

  23. Chen Z, Wen J, Yan C, Rice L, Sohn H, Shen M, Cai M, Dunn B, Lu Y. High-performance supercapacitors based on hierarchically porous graphite particles. Adv Energy Mater. 2011;1(4):551.

    Article  CAS  Google Scholar 

  24. Chen S, Ma L, Zhang K, Kamruzzaman M, Zhi C, Zapien JA. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J Mater Chem A. 2019;7(13):7784.

    Article  CAS  Google Scholar 

  25. Zhang H, Chen Z, Zhang Y, Ma Z, Zhang Y, Bai L, Sun L. Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. J Mater Chem A. 2021;9(30):16565.

    Article  CAS  Google Scholar 

  26. Lu XF, Fang Y, Luan D, Lou XW. Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 2021;21(4):1555.

    Article  CAS  Google Scholar 

  27. Ren J, Huang Y, Zhu H, Zhang B, Zhu H, Shen S, Tan G, Wu F, He H, Lan S, Xia X, Liu Q. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy. 2020;2(2):176.

    Article  CAS  Google Scholar 

  28. Wu HB, Lou XW. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv. 2017;3(12):9252.

    Article  Google Scholar 

  29. Luo H, Wang B, Wang F, Yang J, Wu F, Ning Y, Zhou Y, Wang D, Liu H, Dou S. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano. 2020;14(6):7328.

    Article  CAS  Google Scholar 

  30. Yang J, Wang B, Jin F, Ning Y, Luo H, Zhang J, Wang F, Wang D, Zhou Y. A MIL-47(V) derived hierarchical lasagna-structured V2O3@C hollow microcuboid as an efficient sulfur host for high-performance lithium-sulfur batteries. Nanoscale. 2020;12(7):4552.

    Article  CAS  Google Scholar 

  31. Hou JH, Cao CB, Idrees F, Ma XL. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015;9(3):2556.

    Article  CAS  Google Scholar 

  32. Liu Y, Liu Y, Yamauchi Y, Alothman ZA, Kaneti YV, Wu X. Enhanced zinc ion storage capability of V2O5 electrode materials with hollow interior cavities. Batteries Supercaps. 2021;4(12):1867.

    Article  CAS  Google Scholar 

  33. Senthilkumar ST, Selvan RK, Melo JS, Sanjeeviraja C. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon. ACS Appl Mater Interfaces. 2013;5(21):10541.

    Article  CAS  Google Scholar 

  34. Pan Z, Lu Z, Xu L, Wang D. A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl Surf Sci. 2020;510:145384.

    Article  CAS  Google Scholar 

  35. Javed MS, Lei H, Wang ZL, Liu BT, Cai X, Mai WJ. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy. 2020;70:104573.

    Article  CAS  Google Scholar 

  36. Baddour-Hadjean R, Smirnov MB, Smirnov KS, Kazimirov VY, Gallardo-Amores JM, Amador U, Arroyo-de Dompablo ME, Pereira-Ramos JP. Lattice dynamics of beta-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph. Inorg Chem. 2012;51(5):3194.

    Article  CAS  Google Scholar 

  37. Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, Zhang Z, Tan C, Zhang H. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc. 2016;138(22):6924.

    Article  CAS  Google Scholar 

  38. Liu Y, Hu P, Liu H, Song J, Umar A, Wu X. Toward a high performance asymmetric hybrid capacitor by electrode optimization. Inorg Chem Front. 2019;6(10):2824.

    Article  CAS  Google Scholar 

  39. Cao K, Jiao L, Liu H, Liu Y, Wang Y, Guo Z, Yuan H. 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv Energy Mater. 2015;5(4):1401421.

    Article  Google Scholar 

  40. Huang X, Yu H, Chen J, Lu Z, Yazami R, Hng HH. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Adv Mater. 2014;26(8):1296.

    Article  CAS  Google Scholar 

  41. Ma Y, Xie XL, Lv RH, Na B, Ouyang JB, Liu HS. Nanostructured polyaniline-cellulose papers for solid-state flexible aqueous Zn-ion battery. ACS Sustain Chem Eng. 2018;6(7):8697.

    Article  CAS  Google Scholar 

  42. Lu Y, Li Z, Bai Z, Mi H, Ji C, Pang H, Yu C, Qiu J. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy. 2019;66:104132.

    Article  CAS  Google Scholar 

  43. Liu Y, Liu Y, Wu X, Cho YR. Enhanced electrochemical performance of Zn/VOx batteries by a carbon encapsulation strategy. ACS Appl Mater Interfaces. 2022;14:11654.

    Google Scholar 

  44. Zhao DP, Liu HQ, Wu X. Bi-interface induced multi-active MCo2O4@MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy. 2019;57:363.

    Article  CAS  Google Scholar 

  45. Liu P, Liu W, Huang Y, Li P, Yan J, Liu K. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020;25:858.

    Article  CAS  Google Scholar 

  46. Zheng Y, Zhao W, Jia D, Liu Y, Cui L, Wei D, Zheng R, Liu J. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem Eng J. 2020;387:124161.

    Article  CAS  Google Scholar 

  47. Wang H, Wang M, Tang Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater. 2018;13:1.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (No. 52172218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3413 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Umar, A. & Wu, X. Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor. Rare Met. 41, 2985–2991 (2022). https://doi.org/10.1007/s12598-022-02030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02030-0

Navigation