Skip to main content

Advertisement

Log in

A novel Li-ion supercapattery by K-ion vacant ternary perovskite fluoride anode with pseudocapacitive conversion/insertion dual mechanisms

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

An innovative K+ vacant ternary perovskite fluoride (K0.89Ni0.02Co0.03Mn0.95F3.0, KNCMF-3#) anode was designed for advanced Li-ion supercapattery (i.e., Li-ion capacitors/batteries, LIC/Bs). Owing to the conversion/insertion dual mechanisms and fast pseudocapacitive control dynamics, the KNCMF-3# electrode exhibits superior electrochemical performance, especially the excellent cycle performance (467% (229 mAh·g−1)/1000 cycles/2 A·g−1). Moreover, the hybrid KNCMF-3#/reduced graphene oxide (rGO) electrode can further increase the electrochemical performance (217–97 mAh·g−1/0.1–3.2 A·g−1, 150% (197 mAh·g−1)/1000 cycles/2 A·g−1). Also, a novel capacitor/battery cathode, activated carbon (AC) + LiFePO4 + graphene (AC + LFP + G), exhibits impressive performance (128–82 mAh·g−1/0.1–3.2 A·g−1, 84%/1000 cycles/2 A·g−1). By the synergistic optimization of anode and cathode, the Li-ion supercapattery KNCMF-3#@rGO//AC + LFP + G demonstrates remarkable performance, for example, 111.9–23.8 Wh·kg−1/0.4–8.0 kW·kg−1/82%/2000 cycles/5 A·g−1/0–4 V, which is superior to KNCMF-3#//AC LICs, KNCMF-3#@rGO//AC LICs, KNCMF-3#//AC + LFP + G LIC/Bs. In all, the novel Li-ion supercapattery idea adds a promising perspective to develop advanced energy storage devices.

Graphical abstract

摘要

设计了一种新型的钾离子空位三元钙钛矿氟化物 (K0.89Ni0.02Co0.03Mn0.95F3.0, KNCMF-3#) 负极用于先进的锂离子超级电容电池 (即锂离子电容器/电池, LIC/Bs)。由于转换/插入双重机制和快速赝电容控制动力学, KNCMF-3#电极表现出优异的电化学性能, 尤其是优异的循环性能 (467% (229 mAh·g−1)/1000次循环/2 A·g−1)。此外, KNCMF-3#/还原氧化石墨烯 (rGO) 复合电极可以进一步提高电化学性能 (217–97 mAh·g−1/0.1–3.2 A·g−1, 150% (197 mAh·g−1) /1000循环/2 A·g−1)。此外, 构筑了一种新型电容器/电池正极-活性炭 (AC) + LiFePO4 + 石墨烯 (AC + LFP + G), 该正极展现出优异的电化学性能 (128–82 mAh·g−1/0.1–3.2 A·g−1, 84%/1000循环 /2 A·g−1)。通过正负极协同优化, 锂离子超级电容电池KNCMF-3#@rGO//AC + LFP + G表现出卓越的性能, 例如111.9–23.8 Wh·kg−1/0.4–8.0 kW·kg−1/82%/2000循环/5 A·g−1/0–4 V, 优于KNCMF-3#//AC和KNCMF-3#@rGO//AC LICs以及KNCMF-3#//AC + LFP + G LIC/Bs。总之, 本文提出的新型锂离子超级电容电池理念为开发先进的储能设备增添了前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bonaccorso F, Colombo L, Yu GH, Stoller M, Tozzini V, Ferrari AC, Ruoff RV. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 2015;347(6217):1246501.

    Article  CAS  Google Scholar 

  2. Yekini SM, Wazir MN. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew Sustain Energy Rev. 2014;35:499.

    Article  Google Scholar 

  3. Li YM, Lu YX, Zhao CL, Hu YS, Titirici MM, Li H, Huang XJ, Chen LQ. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017;7:130.

    Article  Google Scholar 

  4. Zheng H, Chen X, Yang Y, Li L, Feng CQ, Wang SQ. Self-assembled uniform double-shelled Co3V2O8 hollow nanospheres as anodes for high-performance Li-ion batteries. Rare Met. 2021;40(12):3485.

    Article  CAS  Google Scholar 

  5. Qin P, Zhang SQ, Yung KKL, Huang ZF, Gao B. Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Met. 2021;40(9):2447.

    Article  CAS  Google Scholar 

  6. Wang XF, Shen GZ. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy. 2015;15:104.

    Article  CAS  Google Scholar 

  7. Aravindan V, Lee YS, Madhavi S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries. Adv Energy Mater. 2017;7(17):1602607.

    Article  CAS  Google Scholar 

  8. Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619.

    Article  CAS  Google Scholar 

  9. Luo JM, Zhang WK, Yuan HD, Jin CB, Zhang LY, Huang H, Liang C, Xia Y, Zhang J, Gan YP, Tao XY. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017;11(3):2459.

    Article  CAS  Google Scholar 

  10. Wang HW, Zhu CR, Chao DL, Yan QY, Fan HJ. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater. 2017;29(46):1702093.

    Article  CAS  Google Scholar 

  11. Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013;25(40):5807.

    Article  CAS  Google Scholar 

  12. Gao P, Chen Z, Gong YX, Zhang R, Liu H, Tang P, Chen XH, Passerini S, Liu JL. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals. Adv Energy Mater. 2020;10(14):1903780.

    Article  CAS  Google Scholar 

  13. Shi W, Ding R, Xu QL, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Vacancy defective perovskite Na0.85Ni0.45Co0.55F3.56 nanocrystal anodes for advanced lithium-ion storage driven by surface conversion and insertion hybrid mechanisms. Chem Commun. 2019;55(47):6739.

    Article  CAS  Google Scholar 

  14. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei QL, Lau JD. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2020;5(1):5.

    Article  Google Scholar 

  15. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12(6):518.

    Article  CAS  Google Scholar 

  16. Chao DL, Zhu CG, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7(1):12122.

    Article  CAS  Google Scholar 

  17. Ghosh A, Ra EJ, Jin MH, Jeong HK, Kim TH, Biswas C, Lee YH. High pseudocapacitance from ultrathin V2O5 films electrodeposited on self-standing carbon-nanofiber paper. Adv Funct Mater. 2011;21(13):2541.

    Article  CAS  Google Scholar 

  18. Feng N, Meng RJ, Zu LH, Feng YT, Peng CX, Huang JM, Liu GL, Chen BJ, Yang JH. A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nat Commun. 2019;10(1):1372.

    Article  CAS  Google Scholar 

  19. Sun RM, Wei QL, Sheng JZ, Shi CW, An QY, Liu SJ, Mai LQ. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy. 2017;35:396.

    Article  CAS  Google Scholar 

  20. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828.

    Article  CAS  Google Scholar 

  21. Cheng JL, Xin HL, Zheng HM, Wang B. One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability. J Power Sources. 2013;232:152.

    Article  CAS  Google Scholar 

  22. Hwang JY, El-Kady MF, Wang Y, Wang LS, Shao YL, Marsh K, Ko JM, Kaner RB. Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy. 2015;18:57.

    Article  CAS  Google Scholar 

  23. Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy. 2016;25:193.

    Article  CAS  Google Scholar 

  24. Xu QL, Ding R, Shi W, Ying DF, Huang YF, Yan T, Gao P, Sun XJ, Liu EH. Perovskite KNi0.1Co0.9F3 as a pseudocapacitive conversion anode for high-performance nonaqueous Li-ion capacitors and dual-ion batteries. J Mater Chem A. 2019;7(14):8315.

    Article  CAS  Google Scholar 

  25. Ying DF, Ding R, Huang YF, Shi W, Xu QL, Tan CN, Sun XJ, Gao P, Liu EH. Conversion pseudocapacitance-contributing and robust hetero-nanostructural perovskite KCo0.54Mn0.46F3 nanocrystals anchored on graphene nanosheet anodes for advanced lithium-ion capacitors, batteries and their hybrids. J Mater Chem A. 2019;7(31):18257.

    Article  CAS  Google Scholar 

  26. Rui K, Wen ZY, Lu Y, Jin J, Shen C. One-step solvothermal synthesis of nanostructured manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism. Adv Energy Mater. 2015;5(7):1401716.

    Article  CAS  Google Scholar 

  27. Huang YF, Li XD, Ding R, Ying DF, Yan T, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Tetragonal MF2 (M=Ni, Co) micro/nanocrystals anodes for lithium/sodium-ion capacitors. Electrochim Acta. 2020;329:135138.

    Article  CAS  Google Scholar 

  28. Huang YF, Ding R, Ying DF, Shi W, Huang YX, Tan CN, Sun XJ, Gao P, Liu EH. Engineering doping-vacancy double defects and insights into the conversion mechanisms of an Mn–O–F ultrafine nanowire anode for enhanced Li/Na-ion storage and hybrid capacitors. Nanoscale Adv. 2019;1(12):4669.

    Article  CAS  Google Scholar 

  29. Sun L, Liu Y, Wu J, Shao R, Jiang R, Tie Z, Jin Z. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries. Small. 2021. https://doi.org/10.1002/smll.202102894.

    Article  Google Scholar 

  30. Li X, Sun X, Hu X, Fan F, Cai S, Zheng C, Stucky GD. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020;77:105143.

    Article  CAS  Google Scholar 

  31. Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C. 2007;111(40):14925.

    Article  CAS  Google Scholar 

  32. Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukela AK. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc. 2011;133(40):16291.

    Article  CAS  Google Scholar 

  33. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343(6176):1210.

    Article  CAS  Google Scholar 

  34. Kim H, Hong JY, Park YU, Kim J, Hwang I, Kang K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater. 2015;25(4):534.

    Article  CAS  Google Scholar 

  35. Lim E, Jo C, Kim H, Kim MH, Mun Y, Chun JY, Ye YJ, Hwang J, Ha KS, Roh KC, Kang K, Yoon S, Lee J. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano. 2015;9(7):7497.

    Article  CAS  Google Scholar 

  36. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD. Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces. 2012;4(12):7007.

    Article  CAS  Google Scholar 

  37. Li LL, Peng SJ, Wang J, Cheah YL, Teh P, Ko Y, Wong CL, Srinivasan M. Facile approach to prepare porous CaSnO3 nanotubes via a single spinneret electrospinning technique as anodes for lithium ion batteries. ACS Appl Mater Interfaces. 2012;4(11):6005.

    Article  CAS  Google Scholar 

  38. Xiao LF, Cao YL, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie ZM, Exarhos GJ, Liu J. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater. 2012;24(9):1176.

    Article  CAS  Google Scholar 

  39. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM. Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc. 2001;148(4):A285.

    Article  CAS  Google Scholar 

  40. Zhang H, Zhou YN, Sun Q, Fu ZW. Nanostructured nickel fluoride thin film as a new Li storage material. Solid State Sci. 2008;10(9):1166.

    Article  CAS  Google Scholar 

  41. Teng YT, Wei FX, Yazami R. Synthesis of NixCo(1–x)F2 (x = 0, 0.25, 0.50, 0.75, 1.0) and application in lithium ion batteries. J Alloys Compd. 2015;653:434.

    Article  CAS  Google Scholar 

  42. Balaya P, Li H, Kienle L, Maier J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater. 2003;13(8):621.

    Article  CAS  Google Scholar 

  43. Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater. 2003;15(9):736.

    Article  CAS  Google Scholar 

  44. Li Q, Li HS, Xia QT, Hu ZQ, Zhu Y, Yan SS, Ge C, Zhang QH, Wang XX, Shang XT, Fan ST, Long YZ, Gu L, Miao GX, Yu GH, Moodera JS. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater. 2021;20(1):76.

    Article  CAS  Google Scholar 

  45. Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc. 2002;149(5):A627.

    Article  CAS  Google Scholar 

  46. Zhang J, Shi ZQ, Wang CY. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta. 2014;125:22.

    Article  CAS  Google Scholar 

  47. Zhang J, Wu HZ, Wang J, Shi JL, Shi ZQ. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochim Acta. 2015;182:156.

    Article  CAS  Google Scholar 

  48. Wang HW, Guan C, Wang XF, Fan HJ. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small. 2015;11(12):1470.

    Article  CAS  Google Scholar 

  49. Wang HW, Zhang Y, Ang HX, Zhang YQ, Tan HT, Zhang YF, Guo YY, Franklin JB, Wu XL, Srinivasan M, Fan HJ, Yan QY. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater. 2016;26(18):3082.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22078279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ding.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8511 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YF., Ding, R., Ying, DF. et al. A novel Li-ion supercapattery by K-ion vacant ternary perovskite fluoride anode with pseudocapacitive conversion/insertion dual mechanisms. Rare Met. 41, 2491–2504 (2022). https://doi.org/10.1007/s12598-022-01979-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01979-2

Keywords

Navigation