Skip to main content

Advertisement

Log in

Recent advances in tribological and wear properties of biomedical metallic materials

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Biomedical metallic materials are commonly used in the repair and replacement of human tissues. After the materials are implanted in the human body, the implants can rub against human tissue or other implants, resulting in wear and tear of the implants. The wear and tear of implants in the human body can lead to osteolysis and inflammation, which can affect the longevity of the implant and human health. For the sake of human health and the longevity of implants, it is essential to study the frictional and wear properties of biomedical metallic materials. The present review summarizes the current research on the frictional and wear properties of biomedical metallic materials in recent years, as well as the methods and techniques to improve the frictional and wear properties of the materials. The significance of the present review lies in that it could provide momentus information for further investigation of the tribological properties of biomedical metallic materials.

Graphic abstract

摘要

生物医用金属材料常用于人体组织的修复和替换。材料植入人体后, 植入物可能会与人体组织或其他植入物发生摩擦, 从而导致植入物的磨损。植入物在人体中的磨损会导致骨溶解和炎症, 从而影响植入物的寿命及人体健康。为了人体的健康和植入物的使用寿命, 研究生物医用金属材料的摩擦磨损性能至关重要。本文综述了近年来生物医用金属材料摩擦磨损性能的研究现状, 以及改善材料摩擦磨损性能的方法和技术。本综述的意义在于它可以为进一步研究生物医用金属材料的摩擦磨损性能提供重要信息。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [16]. Copyright 2021, IOPscience

Fig. 2
Fig. 3

Reproduced with permission from Ref. [32]. Copyright 2021, Elsevier

Fig. 4

Reproduced with permission from Ref. [33]. Copyright 2021, Elsevier

Fig. 5

Reproduced with permission from Ref. [34]. Copyright 2021, Elsevier

Fig. 6

Reproduced with permission from Ref. [51]. Copyright 2021, Elsevier

Fig. 7

Reproduced with permission from Ref. [57]. Copyright 2021, Elsevier

Fig. 8

Reproduced with permission from Ref. [71]. Copyright 2021, Elsevier

Fig. 9

Reproduced with permission from Ref. [81]. Copyright 2021, Elsevier

Similar content being viewed by others

References

  1. Ehtemam-Haghighi S, Prashanth KG, Attar H, Chaubey AK, Cao GH, Zhang LC. Evaluation of mechanical and wear properties of Ti–xNb–7Fe alloys designed for biomedical applications. Mater Des. 2016;111:592.

    Article  CAS  Google Scholar 

  2. Wu XY, Wang T, Zhou M, Huang WJ, Huang WX. Phytic acid/hydroxide hydroxide surface modification on biomineralization properties of 3D printed porous titanium. Chin J Rare Met. 2020;44(7):680.

    Google Scholar 

  3. Zhang E, Liu C. A new antibacterial Co–Cr–Mo–Cu alloy: preparation, biocorrosion, mechanical and antibacterial property. Mater Sci Eng C. 2016;69:134.

    Article  CAS  Google Scholar 

  4. E SF, Shi L, Guo ZG, Liu WM. The recent progress of tribological biomaterials. Biosurf Biotribol. 2015;1(2):81.

    Article  Google Scholar 

  5. Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2020;33(3):477.

    Article  Google Scholar 

  6. Sahoo P, Das SK, Davim JP. 1-Tribology of Materials for Biomedical Applications. In: Davim JP, editor. Mechanical Behaviour of Biomaterials. Cambridge: Woodhead Publishing; 2019. 1.

    Google Scholar 

  7. Holmes D, Sharifi S, Stack MM. Tribo-corrosion of steel in artificial saliva. Tribol Int. 2014;75:80.

    Article  CAS  Google Scholar 

  8. Muley SV, Vidvans AN, Chaudhari GP, Udainiya S. An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomater. 2016;30:408.

    Article  CAS  Google Scholar 

  9. Shen G, Fang F, Kang C. Tribological performance of bioimplants: a comprehensive review. Nanotechnol Precis Eng. 2018;1(2):107.

    Google Scholar 

  10. Fellah M, Labaïz M, Assala O, Iost A, Dekhil L. Tribological behaviour of AISI 316L stainless steel for biomedical applications. Tribol Mater Surf Interfaces. 2013;7(3):135.

    Article  CAS  Google Scholar 

  11. Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561.

    Article  CAS  Google Scholar 

  12. Chen JX, Gao M, Tan LL, Yang K. Microstructure, mechanical and biodegradable properties of a Mg–2Zn–1Gd–0.5Zr alloy with different solution treatments. Rare Met. 2019;38(6):532.

    Article  CAS  Google Scholar 

  13. Zhu DH, Cockerill I, Su YC, Zhang ZX, Fu JY, Lee KW, Ma J, Okpokwasili C, Tang LP, Zheng YF, Qin YX, Wang YD. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. Acs Appl Mater Interfaces. 2019;11(7):6809.

    Article  CAS  Google Scholar 

  14. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1.

    Article  Google Scholar 

  15. Cheng J, Huang T, Zheng YF. Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites. J Biomed Mater Res A. 2014;102(7):2277.

    Article  CAS  Google Scholar 

  16. Wood RJK. Tribo-corrosion of coatings: a review. J Phys D. 2007;40(18):5502.

    Article  CAS  Google Scholar 

  17. Mathew MT, Srinivasa Pai P, Pourzal R, Fischer A, Wimmer MA. Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol. 2009;2009:25.

  18. Mischler S, Muñoz AI. Wear of CoCrMo alloys used in metal-on-metal hip joints: a tribocorrosion appraisal. Wear. 2013;297(1):1081.

    Article  CAS  Google Scholar 

  19. Alves SA, Beline T, Barão VAR, Sukotjo C, Mathew MT, Rocha LA, Celis JP, Souza JCM. Chapter 3-Degradation of titanium-based implants. In: Souza JCM, Hotza D, Henriques B, Boccaccini AR, editors. Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications. Oxford: Elsevier; 2018. 41.

    Chapter  Google Scholar 

  20. Lu X, Zhang D, Xu W, Yu A, Zhang J, Tamaddon M, Zhang J, Qu X, Liu C, Su B. The effect of Cu content on corrosion, wear and tribocorrosion resistance of Ti-Mo-Cu alloy for load-bearing bone implants. Corros Sci. 2020;177:109007.

    Article  CAS  Google Scholar 

  21. Daley B, Doherty AT, Fairman B, Case CP. Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br. 2004;86(4):598.

    Article  CAS  Google Scholar 

  22. Seghizzi P, D’Adda F, Borleri D, Barbic F, Mosconi G. Cobalt myocardiopathy. A critical review of literature. Sci Total Environ. 1994;150(1–3):105.

    Article  CAS  Google Scholar 

  23. Bandyopadhyay A, Shivaram A, Isik M, Avila JD, Dernell WS, Bose S. Additively manufactured calcium phosphate reinforced CoCrMo alloy: bio-tribological and biocompatibility evaluation for load-bearing implants. Addit Manuf. 2019;28:312.

    CAS  Google Scholar 

  24. Nayak P. Aluminum: impacts and disease. Environ Res. 2002;89(2):101.

    Article  CAS  Google Scholar 

  25. Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC. Cardiovascular effects of nickel in ambient air. Environ Health Perspect. 2006;114(11):1662.

    Article  CAS  Google Scholar 

  26. Tkachenko S, Datskevich O, Kulak L, Jacobson S, Engqvist H, Persson C. Wear and friction properties of experimental Ti–Si–Zr alloys for biomedical applications. J Mech Behav Biomed Mater. 2014;39:61.

    Article  CAS  Google Scholar 

  27. Goldring SR, Schiller AL, Roelke M, Rourke CM, O’Neil DA, Harris WH. The synovial-like membrane at the bone-cement interface in loose total hip replacements and its proposed role in bone lysis. J Bone Joint Surg Am. 1983;65(5):575.

    Article  CAS  Google Scholar 

  28. Holt G, Murnaghan C, Reilly J, Meek D. The biology of aseptic osteolysis. Clin Orthop Relat Res. 2007;460:240.

    Article  CAS  Google Scholar 

  29. Masui T, Sakano S, Hasegawa Y, Warashina H, Ishiguro N. Expression of inflammatory cytokines, RANKL and OPG induced by titanium, cobalt-chromium and polyethylene particles. Biomaterials. 2005;26(14):1695.

    Article  CAS  Google Scholar 

  30. Jiang Y, Jia T, Gong W, Wooley P, Yang SY. Effects of Ti, PMMA, UHMWPE, and Co–Cr wear particles on differentiation and functions of bone marrow stromal cells. J Biomed Mater Res A. 2013;101:2817.

    Article  Google Scholar 

  31. Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW. The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg Am. 1993;75(6):825.

    Article  CAS  Google Scholar 

  32. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. Prog Mater Sci. 2009;54(3):397.

    Article  CAS  Google Scholar 

  33. Papagelopoulos PJ, Mavrogenis AF, Karamitros AE, Zahos KA, Nomikos G, Soucacos PN. Distal leg wear debris mass from a rotating hinged knee prosthesis. J Arthroplasty. 2007;22(6):909.

    Article  Google Scholar 

  34. Tan GM, Lynne G, Sarbjit S. Osteolysis and wear debris after total knee arthroplasty presenting with extra-articular metallosis in the calf. J Arthroplasty. 2008;23(5):775.

    Article  Google Scholar 

  35. Attar H, Prashanth KG, Chaubey AK, Calin M, Zhang LC, Scudino S, Eckert J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142:38.

    Article  CAS  Google Scholar 

  36. Ueda K, Narushima T, Ouchi C, Iguchi Y. Wear loss and elution of C.P.Ti and titanium alloys in simulated body fluids. Mater Sci Forum. 2005;510:2333.

    Article  Google Scholar 

  37. Fellah M, Assala O, Labaïz M, Dekhil L, Iost A. Friction and wear behavior of Ti-6Al-7Nb biomaterial alloy. J Biomater Nanobiotechnology. 2013;4(4):374.

    Article  Google Scholar 

  38. Luo Y, Chen WW, Tian MC, Teng SH. Thermal oxidation of Ti6Al4V alloy and its biotribological properties under serum lubrication. Tribol Int. 2015;89:67.

    Article  CAS  Google Scholar 

  39. Kao WH, Su YL, Horng JH, Yang SE. Tribological performance, electrochemical behavior and biocompatibility of high-temperature gas-nitrided Ti6Al4V alloy. Ind Lubr Tribol. 2018;70(8):1536.

    Article  Google Scholar 

  40. Runa MJ, Mathew MT, Fernandes MH, Rocha LA. First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants. Acta Biomater. 2015;12:341.

    Article  CAS  Google Scholar 

  41. Miura-Fujiwara E, Okumura T, Yamasaki T. Frictional and wear behavior of commercially pure Ti, Ti–6Al–7Nb, and SUS3161, stainless steel in artificial saliva at 310 K. Mater Trans. 2015;56(10):1648.

    Article  CAS  Google Scholar 

  42. Suresh KS, Geetha M, Richard C, Landoulsi J, Ramasawmy H, Suwas S, Asokamani R. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti–13Nb–13Zr alloy in simulated body fluid. Mat Sci Eng C-Mater. 2012;32(4):763.

    Article  CAS  Google Scholar 

  43. Hee AC, Martin PJ, Bendavid A, Jamali SS, Zhao Y. Tribo-corrosion performance of filtered-arc-deposited tantalum coatings on Ti–13Nb–13Zr alloy for bio-implants applications. Wear. 2018;400:31.

    Article  Google Scholar 

  44. Wang ZG, Huang WJ, Ma YL. Micro-scale abrasive wear behavior of medical implant material Ti–25Nb–3Mo–3Zr–2Sn alloy on various friction pairs. Mat Sci Eng C-Mater. 2014;42:211.

    Article  CAS  Google Scholar 

  45. Wang ZG, Li Y, Huang WJ, Chen XL, He HR. Micro-abrasion-corrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in simulated physiological fluid. J Mech Behav Biomed Mater. 2016;63:361.

    Article  CAS  Google Scholar 

  46. Wang ZG, Huang WJ, Li Y, He HR, Zhou YT, Zheng ZQ. Tribocorrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in Ringer’s solution. Mat Sci Eng C-Mater. 2017;76:1094.

    Article  CAS  Google Scholar 

  47. Xu W, Chen M, Lu X, Zhang DW, Singh HP, Jian-shu Y, Pan Y, Qu XH, Liu CZ. Effects of Mo content on corrosion and tribocorrosion behaviours of Ti–Mo orthopaedic alloys fabricated by powder metallurgy. Corros Sci. 2020;168:108557.

    Article  CAS  Google Scholar 

  48. Xu W, Yu A, Lu X, Tamaddon M, Ng L, Hayat Md, Wang M, Zhang J, Qu X, Liu C. Synergistic interactions between wear and corrosion of Ti–16Mo orthopedic alloy. J Mater Res Technol. 2020;9(5):9996.

    Article  CAS  Google Scholar 

  49. Yang X, Hutchinson CR. Corrosion-wear of beta-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid. Acta Biomater. 2016;42:429.

    Article  CAS  Google Scholar 

  50. Wang ZG, Zhou YT, Wang HN, Li Y, Huang WJ. Tribocorrosion behavior of Ti-30Zr alloy for dental implants. Mater Lett. 2018;218:190.

    Article  CAS  Google Scholar 

  51. Luo W, Kuai J. Friction and wear properties of artificial joints of CoCrMo alloy. IOP Conf Ser: Mater Sci Eng. 2018;439(4):042072.

    Article  Google Scholar 

  52. Sinnett-Jones PE, Wharton JA, Wood RJK. Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments. Wear. 2005;259:898.

    Article  CAS  Google Scholar 

  53. Yoneyama C, Cao S, Igual Munoz A, Mischler S. Influence of bovine serum albumin (BSA) on the tribocorrosion behaviour of a low carbon CoCrMo alloy in simulated body fluids. Lubricants. 2020;8(5):61.

    Article  Google Scholar 

  54. Alvarez-Vera M, Ortega-Saenz JA, Hernandez-Rodriguez MAL. A study of the wear performance in a hip simulator of a metal-metal Co–Cr alloy with different boron additions. Wear. 2020;301(1–2):175.

    Google Scholar 

  55. Salahinejad E, Amini R, Marasi M, Hadianfard MJ. Microstructure and wear behavior of a porous nanocrystalline nickel-free austenitic stainless steel developed by powder metallurgy. Mater Des. 2010;31(4):2259.

    Article  CAS  Google Scholar 

  56. Yan W. Theoretical investigation of wear-resistance mechanism of superelastic shape memory alloy NiTi. Mater Sci Eng A. 2006;427(1):348.

    Article  Google Scholar 

  57. Zhang C, Farhat ZN. Sliding wear of superelastic TiNi alloy. Wear. 2009;267(1):394.

    Article  CAS  Google Scholar 

  58. Neupane R, Farhat Z. Wear and dent resistance of superelastic TiNi alloy. Wear. 2013;301(1–2):682.

    Article  CAS  Google Scholar 

  59. Wu S, Liu X, Yeung KWK, Xu ZS, Chung CY, Chu PK. Wear properties of porous NiTi orthopedic shape memory alloy. J Mater Eng Perform. 2012;21(12):2622.

    Article  CAS  Google Scholar 

  60. Wu S, Liu X, Wu G, Yeung KWK, Zheng D, Chung CY, Xu ZS, Chu PK. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. J Biomed Mater Res A. 2013;101A(9):2586.

    Article  Google Scholar 

  61. Zhou JZ, Sun YJ, Huang S, Sheng J, Li J, Agyenim-Boateng E. Effect of laser peening on friction and wear behavior of medical Ti6Al4V alloy. Opt Laser Technol. 2019;109:263.

    Article  CAS  Google Scholar 

  62. Xu W, Hou CJ, Mao YX, Yang L, Tamaddon M, Zhang JL, Qu XH, Liu CZ, Su B, Lu X. Characteristics of novel Ti–10Mo–xCu alloy by powder metallurgy for potential biomedical implant applications. Bioact Mater. 2020;5(3):659.

    Article  Google Scholar 

  63. Li Y, Cui Y, Zhang F, Xu H. Shape memory behavior in Ti–Zr alloys. Scr Mater. 2011;64(6):584.

    Article  CAS  Google Scholar 

  64. Li DY. A new type of wear-resistant material: pseudo-elastic TiNi alloy. Wear. 1998;221(2):116.

    Article  CAS  Google Scholar 

  65. Ilanaganar E, Anbuselvan S. Wear mechanisms of AZ31B magnesium alloy during dry sliding condition. Mater Today-Proc. 2018;5(1):628.

    Article  CAS  Google Scholar 

  66. Mert F. Wear behaviour of hot rolled AZ31B magnesium alloy as candidate for biodegradable implant material. T Nonferrous Met Soc China. 2017;27(12):2598.

    Article  CAS  Google Scholar 

  67. Li H, Liu D, Zhao Y, Jin F, Chen M. The influence of Zn content on the corrosion and wear performance of Mg–Zn–Ca alloy in simulated body fluid. J Mater Eng Perform. 2016;25(9):3890.

    Article  CAS  Google Scholar 

  68. Hua NB, Chen WZ, Wang QT, Guo QH, Huang YT, Zhang T. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J Alloy Compd. 2018;745:111.

    Article  CAS  Google Scholar 

  69. Dai JW, Zhang XB, Yin Q, Ni SN, Ba ZX, Wang ZZ. Friction and wear behaviors of biodegradable Mg–6Gd–0.5Zn–0.4Zr alloy under simulated body fluid condition. J Magnes Alloy. 2017;5(4):448.

    Article  CAS  Google Scholar 

  70. Liu DB, Wu B, Wang X, Chen MF. Corrosion and wear behavior of an Mg–2Zn–0.2Mn alloy in simulated body fluid. Rare Met. 2015;34(08):553.

    Article  CAS  Google Scholar 

  71. Wang K, Tong X, Lin J, Wei A, Li Y, Dargusch M, Wen C. Binary Zn–Ti alloys for orthopedic applications: corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. J Mater Sci Technol. 2020;74:216.

    Article  Google Scholar 

  72. Lin JX, Tong X, Shi ZM, Zhang DC, Zhang LS, Wang K, Wei AP, Jin LF, Lin JG, Li YC, Wen CE. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater. 2020;106:410.

    Article  CAS  Google Scholar 

  73. Narayanan TSNS, Kim J, Park HW. High performance corrosion and wear resistant Ti–6Al–4V alloy by the hybrid treatment method. Appl Surf Sci. 2020;504:144388.

    Article  Google Scholar 

  74. Zhang JF, Gan XX, Tang HQ, Zhan YZ. Enhancement of wear and corrosion resistance of low modulus beta-type Zr–20Nb–xTi (x=0, 3) dental alloys through thermal oxidation treatment. Mat Sci Eng C-Mater. 2017;76:260.

    Article  CAS  Google Scholar 

  75. Chamgordani SA, Miresmaeili R, Aliofkhazraei M. Improvement in tribological behavior of commercial pure titanium (CP–Ti) by surface mechanical attrition treatment (SMAT). Tribol Int. 2018;119:744.

    Article  Google Scholar 

  76. Saravanan P, Raja VS, Mukherjee S. Effect of plasma immersion ion implantation of nitrogen on the wear and corrosion behavior of 316LVM stainless steel. Surf Coat Technol. 2007;201(19):8131.

    Article  CAS  Google Scholar 

  77. Mohan L, Anandan C. Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti–13Nb–13Zr. Appl Surf Sci. 2013;282:281.

    Article  CAS  Google Scholar 

  78. Li QY, Zhang QQ, An MZ. Enhanced corrosion and wear resistance of AZ31 magnesium alloy in simulated body fluid via electrodeposition of nanocrystalline zinc. Materialia. 2018;4:282.

    Article  Google Scholar 

  79. Çomaklı O, Yazıcı M, Kovacı H, Yetim T, Yetim AF, Çelik A. Tribological and electrochemical properties of TiO2 films produced on Cp-Ti by sol-gel and SILAR in bio-simulated environment. Surf Coat Technol. 2018;352:513.

    Article  Google Scholar 

  80. Comakli O, Yatim F, Yazici M, Yetim T, Celik A. Tribological and electrochemical behavior of Ag2O/ZnO/NiO nanocomposite coating on commercial pure titanium for biomedical applications. Ind Lubr Tribol. 2019;71(10):1166.

    Article  Google Scholar 

  81. Siddaiah A, Mao B, Kasar AK, Liao Y, Menezes PL. Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy. Wear. 2020;462–463:203490.

    Article  Google Scholar 

  82. Guo L, Qin L, Kong F, Yi H, Tang B. Improving tribological properties of Ti–5Zr–3Sn–5Mo–15Nb alloy by double glow plasma surface alloying. Appl Surf Sci. 2016;388:203.

    Article  CAS  Google Scholar 

  83. Chen JX, Lu SH, Tan LL, Etim IP, Yang K. Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy. Surf Coat Tech. 2018;352:273.

    Article  CAS  Google Scholar 

  84. Gradzka-Dahlke M, Dabrowski JR, Dabrowski B. Characteristic of the porous 316 stainless steel for the friction element of prosthetic joint. Wear. 2007;263:1023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31700819), the Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-20-05B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Fang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HF., Huang, JY., Lin, GC. et al. Recent advances in tribological and wear properties of biomedical metallic materials. Rare Met. 40, 3091–3106 (2021). https://doi.org/10.1007/s12598-021-01796-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01796-z

Keywords

Navigation