Skip to main content
Log in

Interface materials for perovskite solar cells

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Perovskite solar cells exhibit great potential to become commercial photovoltaic technology due to their high power conversion efficiency, low cost, solution processability, and facile large-area device manufacture. Interface engineering plays a significant role to optimize device performance. For the anode in the inverted devices, this review introduces the progress on the modification of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) including chemical structure alteration, physical doping, and solution treatment. We present the recent advances of dopant-free hole transport materials widely applied in mesoporous and conventional devices, outlining their innovation with novel molecular design concepts toward promising material properties, and device performance. For the cathode, various metal oxide and organic electron transport materials are covered and the different modification strategies and related mechanisms are highlighted. Most importantly, simple synthesis process, inexpensive raw materials and highly reproducible photovoltaic performance are the main consideration for the design of all the interface materials. Finally, an outlook and some suggestions regarding the future interface engineering are proposed based on the summary of the current development status and working mechanism of interface materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hammarstrom L. Artificial photosynthesis and solar fuels. Accounts Chem Res. 2009;42(12):1859.

  2. Kurtz SR, Allerman A, Jones E, Gee J, Banas J, Hammons BJ. InGaAsN solar cells with, 1.0 eV band gap, lattice matched to GaAs. Appl Phys Lett. 1999;74(5):729.

    Article  CAS  Google Scholar 

  3. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry. 2014;6(3):242.

    Article  CAS  Google Scholar 

  4. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. 18% efficiency organic solar cells. Sci Bull. 2020;65(4):272.

    Article  CAS  Google Scholar 

  5. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater. 2020;32(19):1908205.

    Article  CAS  Google Scholar 

  6. Kojima A, Teshima K, Shirai Y, Tsutomu M. Organo metal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.

    Article  CAS  Google Scholar 

  7. Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Solar cell efficiency tables (version 54). Prog Photovoltaics Res Appl. 2019;27(7):565.

    Article  Google Scholar 

  8. Niu T, Zhu W, Zhang Y, Xue Q, Jiao X, Wang Z, Xie YM, Li P, Chen R, Huang F, Li Y, Hin-Lap Y, Cao Y. D-A-π-A-D type dopant-free hole transport material for low-cost, efficient and stable perovskite solar cells. Joule. 2021;5(1):249.

  9. Yang G, Tao H, Qin P, Ke W, Fang G. Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A. 2016;4(11):3970.

    Article  CAS  Google Scholar 

  10. Yao D, Mao X, Wang X, Yang Y, Hoang MT, Du A, Waclawik ER, Wilson GJ, Wang H. The effect of ethylene-amine ligands enhancing performance and stability of perovskite solar cells. J Power Sources. 2020;463:228210.

    Article  CAS  Google Scholar 

  11. Ham ND, Yang Y, Hoang MT, Wang T, Tiong VT, Wilson GJ, Wang H. 1D pyrrolidinium lead iodide for efficient and stable perovskite solar cells. Energy Technol. 2020;8(4):1900918.

    Article  Google Scholar 

  12. Yao D, Zhang C, Zhang S, Yang Y, Du A, Waclawik E, Yu X, Wilson GJ, Wang H. 2D-3D mixed organic-inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl Mater Interfaces. 2019;11(33):29753.

    Article  CAS  Google Scholar 

  13. Zhang C, Wang S, Zhang H, Feng Y, Tian W, Yan Y, Bian J, Wang Y, Jin S, Zakeeruddin S, Grätzelb M, Shi Y. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy Environ Sci. 2019;12(12):3585.

    Article  CAS  Google Scholar 

  14. Jiang Y, Liu T, Zhou Y. Recent advances of synthesis, properties, film fabrication methods, modifications of poly (3, 4-ethylenedioxythiophene), and applications in solution-processed photovoltaics. Adv Funct Mater. 2020:2006213.

  15. Li Y, Meng H, Liu T, Xiao Y, Tang Z, Pang B, Li Y, Xiang Y, Zhang G, Lu X. 8.78% efficient all-polymer solar cells enabled by polymer acceptors based on a B ← N embedded electron-deficient unit. Adv Mater. 2019;31(44):1904585.

    Article  CAS  Google Scholar 

  16. Zamora-Sequeira R, Ardao I, Starbird R, García-González CA. Conductive nanostructured materials based on poly-(3, 4-ethylenedioxythiophene)(PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr Polym. 2018;189(9):304.

    Article  CAS  Google Scholar 

  17. Wong A, Santos AM, Silva TA, Fatibello-Filho O. Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT: PSS. Talanta. 2018;183(10):329.

    Article  CAS  Google Scholar 

  18. Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron. 2018;107(8):184.

    Article  CAS  Google Scholar 

  19. Shi H, Liu C, Jiang Q, Xu J. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater. 2015;1(4):1500017.

    Article  Google Scholar 

  20. Groenendaal L, Zotti G, Aubert PH, Waybright SM, Reynolds JR. Electrochemistry of poly (3, 4-alkylenedioxythiophene) derivatives. Adv Mater. 2003;15(11):855.

    Article  CAS  Google Scholar 

  21. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater. 2000;12(7):481.

    Article  CAS  Google Scholar 

  22. Tran-Van F, Garreau S, Louarn G, Froyer G, Chevrot C. Fully undoped and soluble oligo (3, 4-ethylenedioxythiophene) s: spectroscopic study and electrochemical characterization. J Mater Chem. 2001;11(5):1378.

    Article  CAS  Google Scholar 

  23. Jonas F, Heywang G, Schmidtberg W, Heinze J, Dietrich M. Polythiophenes, process for their preparation and their use. U.S. Patent 4,959,430. 1990.

  24. Greczynski G, Johansson N, Lögdlund M, Pettersson L, Salaneck WR, Horsburgh L, Monkman A, dos Santos D, Bredas J. Electronic structure of pristine and sodium doped poly (p-pyridine). J Chem Phys. 2001;114(9):4243.

    Article  CAS  Google Scholar 

  25. Chen ZX, Li Y, Huang F. Persistent and stable organic radicals: design, synthesis and applications. Chem. 2021;7(2):288.

  26. Põldsalu I, Harjo M, Tamm T, Uibu M, Peikolainen AL, Kiefer R. Inkjet-printed hybrid conducting polymer-activated carbon aerogel linear actuators driven in an organic electrolyte. Sens Actuators B Chem. 2017;250(8):44.

    Article  Google Scholar 

  27. Cho SR, Porte Y, Kim YC, Myoung JM. Effect of nonionic surfactant additive in PEDOT: PSS on PFO emission layer in organic–inorganic hybrid light-emitting diode. ACS Appl Mater Interfaces. 2018;10(11):9612.

    Article  CAS  Google Scholar 

  28. Zhou L, Yu M, Chen X, Nie S, Lai WY, Su W, Cui Z, Huang W. Screen-printed poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv Funct Mater. 2018;28(11):1705955.

    Article  Google Scholar 

  29. Ji G, Wang Y, Luo Q, Han K, Xie M, Zhang L, Wu N, Lin J, Xiao S, Li YQ. Fully coated semitransparent organic solar cells with a doctor-blade-coated composite anode buffer layer of phosphomolybdic acid and PEDOT: PSS and a spray-coated silver nanowire top electrode. ACS Appl Mater Interfaces. 2018;10(1):943.

    Article  CAS  Google Scholar 

  30. Wu Z, Yu Z, Yu H, Huang X, Chen M. Effect of trifluoroacetic acid treatment of PEDOT: PSS layers on the performance and stability of organic solar cells. J Mater Sci Mater Electron. 2018;29(8):6607.

    Article  CAS  Google Scholar 

  31. Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y. PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci. 2019;6(19):1900813.

    Article  CAS  Google Scholar 

  32. He X, Yang W, Mao X, Xu L, Zhou Y, Chen Y, Zhao Y, Yang Y, Xu J. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly (3,4-ethylenedioxythiophene)(PEDOT) sponge electrodes. J Power Sources. 2018;376(9):138.

    Article  CAS  Google Scholar 

  33. Li X, Deng X, Li Q, Huang S, Xiao K, Liu Z, Tong Y. Hierarchical double-shelled poly (3, 4-ethylenedioxythiophene) and MnO2 decorated Ni nanotube arrays for durable and enhanced energy storage in supercapacitors. Electrochim Acta. 2018;264(7):46.

    Article  CAS  Google Scholar 

  34. Correa-Baena JP, Abate A, Saliba M, Tress W, Jacobsson TJ, Grätzel M, Hagfeldt A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci. 2017;10(3):710.

    Article  CAS  Google Scholar 

  35. Kim J, Kim G, Back H, Kong J, Hwang IW, Kim TK, Kwon S, Lee JH, Lee J, Yu K. High-performance integrated perovskite and organic solar cells with enhanced fill factors and near-infrared harvesting. Adv Mater. 2016;28:3159.

    Article  CAS  Google Scholar 

  36. Elbohy H, Bahrami B, Mabrouk S, Reza KM, Gurung A, Pathak R, Liang M, Qiao Q, Zhu K. Tuning hole transport layer using urea for high-performance perovskite solar cells. Adv Funct Mater. 2019;29(47):1806740.

    Article  CAS  Google Scholar 

  37. Xiao K, Wen J, Han Q, Lin R, Gao Y, Gu S, Zang Y, Nie Y, Zhu J, Xu J. Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 2020;5(9):2819.

    Article  CAS  Google Scholar 

  38. Lin R, Xiao K, Qin Z, Han Q, Zhang C, Wei M, Saidaminov MI, Gao Y, Xu J, Xiao M. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat Energy. 2019;4(10):864.

    Article  CAS  Google Scholar 

  39. Xiao K, Lin R, Han Q, Hou Y, Qin Z, Nguyen HT, Wen J, Wei M, Yeddu V, Saidaminov MI. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm 2 using surface-anchoring zwitterionic antioxidant. Nat Energy. 2020;5(11):870.

    Article  Google Scholar 

  40. Ouyang J. “Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices. Displays. 2013;34(5):423.

    Article  CAS  Google Scholar 

  41. Kim J, Jung J, Lee D, Joo J. Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synth Met. 2002;126(2–3):311.

    Article  CAS  Google Scholar 

  42. Alamer FA. A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT: PSS. J. Alloys Compd. 2017;702(8):266.

    Article  Google Scholar 

  43. Ding Y, Invernale MA, Sotzing GA. Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. ACS Appl Mater Interfaces. 2010;2(6):1588.

    Article  CAS  Google Scholar 

  44. Gomes L, Branco A, Moreira T, Feliciano F, Pinheiro C, Costa C. Increasing the electrical conductivity of electrochromic PEDOT: PSS films—a comparative study. Sol Energy Mater Sol Cells. 2016;144(10):631.

    Article  CAS  Google Scholar 

  45. Lee YY, Kang HY, Gwon SH, Choi GM, Lim SM, Sun JY, Joo YC. A strain-insensitive stretchable electronic conductor: PEDOT: PSS/acrylamide organogels. Adv Mater. 2016;28(8):1636.

    Article  CAS  Google Scholar 

  46. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y. High-conductivity poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Funct Mater. 2005;15(2):203.

    Article  CAS  Google Scholar 

  47. Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater. 2012;22(2):421.

    Article  CAS  Google Scholar 

  48. Xia Y, Sun K, Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater. 2012;24(18):2436.

    Article  CAS  Google Scholar 

  49. Mengistie DA, Wang PC, Chu CW. Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells. J Mater Chem A. 2013;1(34):9907.

    Article  Google Scholar 

  50. Ouyang J, Xu Q, Chu CW, Yang Y, Li G, Shinar J. On the mechanism of conductivity enhancement in poly (3, 4 ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer. 2004;45(25):8443.

    Article  CAS  Google Scholar 

  51. Alemu D, Wei HY, Ho KC, Chu CW. Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci. 2012;5(11):9662.

    Article  CAS  Google Scholar 

  52. Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinidou E, Strakosas X, Tassone C, Delongchamp DM, Malliaras GG. Structural control of mixed ionic and electronic transport in conducting polymers. Nat Commun. 2016;7(1):1.

    Article  Google Scholar 

  53. Gelbwaser-Klimovsky D, Saikin SK, Goldsmith RH, Aspuru-Guzik A. Optical spectra of p-doped PEDOT nanoaggregates provide insight into the material disorder. ACS Energy Lett. 2016;1(6):1100.

    Article  CAS  Google Scholar 

  54. Reyes-Reyes M, Cruz-Cruz I, López-Sandoval R. Enhancement of the electrical conductivity in PEDOT: PSS films by the addition of dimethyl sulfate. J Phys Chem C. 2010;114(47):20220.

    Article  CAS  Google Scholar 

  55. Li Z, Liu C, Zhang X, Guo J, Cui H, Shen L, Bi Y, Guo W. Using easily prepared carbon nanodots to improve hole transport capacity of perovskite solar cells. Materials Today Energy. 2019;12(7):161.

    Article  Google Scholar 

  56. Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol. 2015;10(5):391.

    Article  CAS  Google Scholar 

  57. Seo J, Park S, Kim YC, Jeon NJ, Noh JH, Yoon SC, Seok SI. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ Sci. 2014;7(8):2642.

    Article  CAS  Google Scholar 

  58. Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J, Fung MK. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT: PSS hole transport layers. J Mater Chem A. 2017;5(12):5701.

    Article  CAS  Google Scholar 

  59. Huang D, Goh T, Kong J, Zheng Y, Zhao S, Xu Z, Taylor AD. Perovskite solar cells with a DMSO-treated PEDOT: PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale. 2017;9(12):4236.

    Article  CAS  Google Scholar 

  60. Thomas JP, Zhao L, McGillivray D, Leung KT. High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition. J Mater Chem A. 2014;2(7):2383.

    Article  CAS  Google Scholar 

  61. Wang Y, Shao P, Chen Q, Li Y, Li J, He D. Nanostructural optimization of silicon/PEDOT: PSS hybrid solar cells for performance improvement. J Mater Chem A. 2017;50(17):175105.

    Google Scholar 

  62. Kim KM, Ahn S, Jang W, Park S, Park OO, Wang DH. Work function optimization of vacuum free top-electrode by PEDOT: PSS/PEI interaction for efficient semi-transparent perovskite solar cells. Sol Energy Mater Sol Cells. 2018;176(6):435.

    Article  CAS  Google Scholar 

  63. Xue Q, Liu M, Li Z, Yan L, Hu Z, Zhou J, Li W, Jiang XF, Xu B, Huang F. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv Funct Mater. 2018;28(18):1707444.

    Article  Google Scholar 

  64. Dong H, Zheng E, Niu Z, Zhang X, Lin YY, Jain P, Yu Q. Hydroxymethyl-functionalized PEDOT-MeOH: PSS for perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(15):17571.

    Article  CAS  Google Scholar 

  65. Zhang M, Chi D, Wang J, Wu F, Huang S. Improved performance of lead-tin mixed perovskite solar cells with PEDOT: PSS treated by hydroquinone. Sol Energy. 2020;201:589.

    Article  CAS  Google Scholar 

  66. Zhao Z, Yuan L, Huang J, Shi J, Cao Y, Zi W, Zhang W. Modified HTL-induced efficiency enhancement for inverted perovskite solar cells. Org Electron. 2020;78:105557.

    Article  CAS  Google Scholar 

  67. Xu L, Li Y, Zhang C, Liu Y, Zheng C, Lv W, Li M, Chen Y, Huang W, Chen R. Improving the efficiency and stability of inverted perovskite solar cells by CuSCN-doped PEDOT: PSS. Sol Energy Mater Sol Cells. 2020;206(7):110316.

    Article  CAS  Google Scholar 

  68. Bao X, Wang J, Li Y, Zhu D, Wu Y, Guo P, Wang X, Zhang Y, Wang J, Yip HL. Interface engineering of a compatible PEDOT derivative bilayer for high-performance inverted perovskite solar cells. Adv Mater Interfaces. 2017;4(6):1600948.

    Article  Google Scholar 

  69. Hong N, Xiao J, Li Y, Li Y, Wu Y, Yu W, Qiu X, Chen R, Yip HL, Huang W. Unexpected fluorescent emission of graft sulfonated-acetone–formaldehyde lignin and its application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices. J Mater Chem C. 2016;4(23):5297.

    Article  CAS  Google Scholar 

  70. Wu Y, Wang J, Qiu X, Yang R, Lou H, Bao X, Li Y. Highly efficient inverted perovskite solar cells with sulfonated lignin doped PEDOT as hole extract layer. ACS Appl Mater Interfaces. 2016;8(19):12377.

    Article  CAS  Google Scholar 

  71. Li Y, Liu T, Qiu X, Zhou Y, Li Y. Engineering enhancing efficiency and durability of inverted perovskite solar cells with phenol/unsaturated carbon–carbon double bond dual-functionalized poly (3, 4-ethylenedioxythiophene) hole extraction layer. ACS Sustain Chem Eng. 2018;7(1):961.

    Article  Google Scholar 

  72. Huang J, Wang C, Liu Z, Qiu X, Yang J, Chang J. Simultaneously enhanced durability and performance by employing dopamine copolymerized PEDOT with high work function and water-proofness for inverted perovskite solar cells. J Mater Chem C. 2018;6(9):2311.

    Article  CAS  Google Scholar 

  73. Yu W, Wang K, Guo B, Qiu X, Hao Y, Chang J, Li Y. Effect of ultraviolet absorptivity and waterproofness of poly (3, 4 ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. J Power Sources. 2017;358(10):29.

    Article  CAS  Google Scholar 

  74. Yu W, Xie X, Li Y, Li Y, Chen R, Qiu X, Huang W. Poly (3, 4-ethylenedioxythiophene): sulfonated acetone-formaldehyde: preparation, characterization and performance as a hole injection material. J Mater Chem C. 2016;4(34):8077.

    Article  CAS  Google Scholar 

  75. Li Y, Liu M, Li Y, Yuan K, Xu L, Yu W, Chen R, Qiu X, Yip HL. Poly (3, 4-ethylenedioxythiophene): methylnaphthalene sulfonate formaldehyde condensate: the effect of work function and structural homogeneity on hole injection/extraction properties. Adv Energy Mater. 2017;7(6):1601499.

    Article  Google Scholar 

  76. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012;2(1):1.

    Article  Google Scholar 

  77. Zhang H, Wu Y, Zhang W, Li E, Shen C, Jiang H, Tian H, Zhu WH. Low cost and stable quinoxaline-based hole-transporting materials with a D-A-D molecular configuration for efficient perovskite solar cells. Chem Sci. 2018;9(27):5919.

    Article  CAS  Google Scholar 

  78. Zhang F, Wang S, Zhu H, Liu X, Liu H, Li X, Xiao Y, Zakeeruddin SM, Grätzel M. Impact of peripheral groups on phenothiazine-based hole-transporting materials for perovskite solar cells. ACS Energy Lett. 2018;3(5):1145.

    Article  CAS  Google Scholar 

  79. Xu P, Liu P, Li Y, Xu B, Kloo L, Sun L, Hua Y. D–A–D-typed hole transport materials for efficient perovskite solar cells: tuning photovoltaic properties via the acceptor group. ACS Appl Mater Interfaces. 2018;10(23):19697.

    Article  CAS  Google Scholar 

  80. Zhang D, Xu P, Wu T, Ou Y, Yang X, Sun A, Cui B, Sun H, Hua Y. Cyclopenta[hi]aceanthrylene-based dopant-free hole-transport material for organic–inorganic hybrid and all-inorganic perovskite solar cells. J Mater Chem A. 2019;7(10):5221.

    Article  CAS  Google Scholar 

  81. Wang Y, Chen W, Wang L, Tu B, Chen T, Liu B, Yang K, Koh CW, Zhang X, Sun H, Chen G, Feng X, Han YW, Aleksandra BD, He Z, Guo X. Dopant-free small-molecule hole-transporting material for inverted perovskite solar cells with efficiency exceeding 21%. Adv Mater. 2019;31(35):1902781.

    Article  Google Scholar 

  82. Pham HD, Jain SM, Li M, Wang ZK, Manzhos S, Feron K, Pitchaimuthu S, Liu Z, Motta N, Durrant JR. Molecular engineering using an anthanthrone dye for low-cost hole transport materials: a strategy for dopant-free, high-efficiency, and stable perovskite solar cells. Adv Energy Mater. 2018;8(16):1703007.

    Article  Google Scholar 

  83. Pham HD, Jain SM, Li M, Wang ZK, Manzhos S, Feron K, Pitchaimuthu S, Liu Z, Motta N, Durrant JR. All-rounder low-cost dopant-free D-A-D hole-transporting materials for efficient indoor and outdoor performance of perovskite solar cells. Adv Electron Mater. 2020;6(4):1900884.

    Article  CAS  Google Scholar 

  84. Yin X, Zhou J, Song Z, Dong Z, Bao Q, Shrestha N, Bista SS, Ellingson RJ, Yan Y, Tang W. Dithieno [3, 2-b: 2′, 3-d] pyrrol-cored hole transport material enabling over 21% efficiency dopant-free perovskite solar cells. Adv Funct Mater. 2019;29(38):1904300.

    Article  Google Scholar 

  85. Cao Y, Li Y, Morrissey T, Lam B, Patrick BO, Dvorak DJ, Xia Z, Kelly TL, Berlinguette CP. Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a perovskite solar cell. Energy Environ Sci. 2019;12(12):3502.

    Article  CAS  Google Scholar 

  86. Jiang K, Wang J, Wu F, Xue Q, Yao Q, Zhang J, Chen Y, Zhang G, Zhu Z, Yan H, Zhu L, Yip HL. Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells. Adv Mater. 2020;32(16):1908011.

    Article  CAS  Google Scholar 

  87. Zheng A, Ren M, Zhang Y, Cai Y, Zhang J, Yuan Y, Lei M, Wang P. A thioxanthenothioxanthene-based hole transporter with 2D molecular stacking for efficient and thermostable perovskite solar cells. ACS Mater Lett. 2020;2(7):691.

    Article  CAS  Google Scholar 

  88. Dong Y, Zhu H, Cao X, Han YP, Zhang HY, Yang Q, Zhang Y, Zhao J, Yin G, Wang S. Simple 9, 10-dihydrophenanthrene based hole-transporting materials for efficient perovskite solar cells. Chem Eng J. 2020;402(1):126298.

    Article  CAS  Google Scholar 

  89. Xue Y, Wu Y, Li Y. Readily synthesized dopant-free hole transport materials with phenol core for stabilized mixed perovskite solar cells. J Power Sources. 2017;344(10):160.

    Article  CAS  Google Scholar 

  90. Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8(2):133.

    Article  CAS  Google Scholar 

  91. Zhu Z, Bai Y, Liu X, Chueh CC, Yang S, Jen AKY. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater. 2016;28(30):6478.

    Article  CAS  Google Scholar 

  92. Tiong V, Pham ND, Wang T, Zhu T, Zhao X, Zhang Y, Shen Q, Bell J, Hu L, Dai S. Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv Funct Mater. 2018;28(10):1705545.

    Article  Google Scholar 

  93. Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Grätzel M, Park NG. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013;13(6):2412.

    Article  CAS  Google Scholar 

  94. Zardetto V, Williams B, Perrotta A, Di Giacomo F, Verheijen M, Andriessen R, Kessels W, Creatore M. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain Energy Fuels. 2017;1(1):30.

    Article  CAS  Google Scholar 

  95. Yang D, Yang R, Zhang J, Yang Z, Liu SF, Li C. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci. 2015;8(11):3208.

    Article  CAS  Google Scholar 

  96. Wang K, Shi Y, Dong Q, Li Y, Wang S, Yu X, Wu M, Ma T. Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells. J Phys Chem Lett. 2015;6(5):755.

    Article  CAS  Google Scholar 

  97. Agresti A, Pescetelli S, Palma AL, Castillo AEDR, Konios D, Kakavelakis G, Razza S, Cinà L, Kymakis E, Bonaccorso F. Graphene interface engineering for perovskite solar module: a power conversion efficiency exceeding 12.5% over 50 cm2 active area. ACS Energy Lett. 2017;2(1):279.

    Article  CAS  Google Scholar 

  98. Ahn N, Kwak K, Jang MS, Yoon H, Lee BY, Lee JK, Pikhitsa PV, Byun J, Choi M. Trapped charge-driven degradation of perovskite solar cells. Nat Commun. 2016;7(1):1.

    Article  Google Scholar 

  99. Grätzel M. The light and shade of perovskite solar cells. Nat Mater. 2014;13(9):838.

    Article  Google Scholar 

  100. Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014;14(5):2591.

    Article  CAS  Google Scholar 

  101. Wang J, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H, Nicholas RJ. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014;14(2):724.

    Article  CAS  Google Scholar 

  102. Zhou Q, Du J, Duan J, Wang Y, Yang X, Duan Y, Tang Q. Photoactivated transition metal dichalcogenides to boost electron extraction for all-inorganic tri-brominated planar perovskite solar cells. J Mater Chem A. 2020;8(16):7784.

    Article  CAS  Google Scholar 

  103. Ball JM, Lee MM, Hey A, Snaith H. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci. 2013;6(6):1739.

    Article  CAS  Google Scholar 

  104. Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ Sci. 2014;7(7):2359.

    Article  CAS  Google Scholar 

  105. Cai Q, Zhang Y, Liang C, Li P, Gu H, Liu X, Wang J, Shentu Z, Fan J, Shao G. Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature. Electrochim Acta. 2018;261(9):227.

    Article  CAS  Google Scholar 

  106. Liao YH, Chang YH, Lin TH, Chan SH, Lee KM, Hsu KH, Hsu JF, Wu MC. Boosting the power conversion efficiency of perovskite solar cells based on Sn doped TiO2 electron extraction layer via modification the TiO2 phase junction. Sol Energy. 2020;205:390.

    Article  CAS  Google Scholar 

  107. Yin G, Ma J, Jiang H, Li J, Yang D, Gao F, Zeng J, Liu Z, Liu SF. Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Appl Mater Interfaces. 2017;9(12):10752.

    Article  CAS  Google Scholar 

  108. Sanehira Y, Shibayama N, Numata Y, Ikegami M, Miyasaka T. Low-temperature synthesized Nb-doped TiO2 electron transport layer enabling high-efficiency perovskite solar cells by band alignment tuning. ACS Appl Mater Interfaces. 2020;12(13):15175.

    Article  CAS  Google Scholar 

  109. Kim JY, Rhee S, Lee H, An K, Biswas S, Lee Y, Shim JW, Lee C, Kim H. Universal elaboration of Al-doped TiO2 as an electron extraction layer in inorganic–organic hybrid perovskite and organic solar cells. Adv Mater Interfaces. 2020;7(10):1902003.

    Article  CAS  Google Scholar 

  110. Xu Z, Yin X, Guo Y, Pu Y, He M. Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J Mater Chem C. 2018;6(17):4746.

    Article  CAS  Google Scholar 

  111. Liu X, Liu Z, Sun B, Tan X, Ye H, Tu Y, Shi T, Tang Z, Liao G. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy. 2018;50(11):201.

    Article  CAS  Google Scholar 

  112. Halvani AE, Kermanpur A, Mayer MT, Steier L, Ahmed T, Turren-Cruz SH, Seo J, Luo J, Zakeeruddin SM, Tress WR. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett. 2018;3(4):773.

    Article  Google Scholar 

  113. Wang Y, Wan J, Ding J, Hu JS, Wang D. A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells. Angew Chem Int Ed. 2019;58(28):9414.

    Article  CAS  Google Scholar 

  114. Liu Z, Chen Q, Hong Z, Zhou H, Xu X, De Marco N, Sun P, Zhao Z, Cheng YB, Yang Y. Low-temperature TiOx compact layer for planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces. 2016;8(17):11076.

    Article  CAS  Google Scholar 

  115. Shahvaranfard F, Altomare M, Hou Y, Hejazi S, Meng W, Osuagwu B, Li N, Brabec CJ, Schmuki P. Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods. Adv Funct Mater. 2020;30(10):1909738.

    Article  CAS  Google Scholar 

  116. Zhang Y, Liu X, Li P, Duan Y, Hu X, Li F, Song Y. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy. 2019;56(8):733.

    Article  CAS  Google Scholar 

  117. Liu Z, Deng K, Hu J, Li L. Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew Chem. 2019;131(33):11621.

    Google Scholar 

  118. Chen J, Zhao X, Kim SG, Park NG. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv Mater. 2019;31(39):1902902.

    Article  Google Scholar 

  119. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun. 2014;5(1):1.

    Article  Google Scholar 

  120. Ueno H, Jeon I, Lin HS, Thote A, Nakagawa T, Okada H, Izawa S, Hiramoto M, Daiguji H, Maruyama S, Matsuo Y. Li@C60 endohedral fullerene as a supraatomic dopant for C60 electron-transporting layers promoting the efficiency of perovskite solar cells. Chem Commun. 2019;55(79):11837.

    Article  CAS  Google Scholar 

  121. Wang YC, Chang J, Zhu L, Li X, Song C, Fang J. Electron-transport-layer-assisted crystallization of perovskite films for high-efficiency planar heterojunction solar cells. Adv Funct Mater. 2018;28(9):1706317.

    Article  Google Scholar 

  122. Ranjan R, Usmani B, Pali S, Ranjan S, Singh A, Garg A, Gupta RK. Role of PC60BM in defect passivation and improving degradation behaviour in planar perovskite solar cells. Sol Energy Mater Sol Cells. 2020;207(1):110335.

    Article  CAS  Google Scholar 

  123. Li D, Kong W, Zhang H, Wang D, Li W, Liu C, Chen H, Song W, Gao F, Amini A, Xu B, Li S, Cheng C. Bifunctional ultrathin PCBM enables passivated trap states and cascaded energy level toward efficient inverted perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(17):20103.

    Article  CAS  Google Scholar 

  124. Chen C, Zhang S, Wu S, Zhang W, Zhu H, Xiong Z, Zhang Y, Chen W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017;7(57):35819.

    Article  CAS  Google Scholar 

  125. Yang Q, Dettori R, Achenie L. A perovskite solar cell with enhanced light stability and high photovoltaic conversion efficiencies. ACS Sustain Chem Eng. 2018;7(1):709.

    Article  Google Scholar 

  126. Liu X, Li X, Zou Y, Liu H, Wang L, Fang J, Yang C. Energy level-modulated non-fullerene small molecule acceptors for improved VOC and efficiency of inverted perovskite solar cells. J Mater Chem A. 2019;7(7):3336.

    Article  CAS  Google Scholar 

  127. Hu Z, Tang G, Miao J, Fu T, Li T, Tai Q, Meng H, Yan F. π-extended Spiro core-based nonfullerene electron-transporting material for high-performance perovskite solar cells. Adv Funct Mater. 2020;30(25):2001073.

    Article  CAS  Google Scholar 

  128. Miao J, Hu Z, Liu M, Ali MU, Goto O, Lu W, Yang T, Liang Y, Meng H. A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency p-i-n perovskite solar cells. Org Electron. 2017;52(6):200.

    Google Scholar 

  129. Jiang K, Wu F, Yu H, Yao YQ, Zhang GY, Zhu LN, Yan H. A perylene diimide-based electron transport layer enabling efficient inverted perovskite solar cells. J Mater Chem A. 2018;6(35):16868.

    Article  CAS  Google Scholar 

  130. Singh A, Chen HC, Chen YF, Lu YJ, Wong KT, Chu CW. Core-twisted tetrachloroperylenediimides: low-cost and efficient non-fullerene organic electron-transporting materials for inverted planar perovskite solar cells. Chemsuschem. 2020;13(14):3686.

    Article  CAS  Google Scholar 

  131. Luo J, Li X, Chen J, Huang F, Cao Y. Efficient three-color white light-emitting diodes from a single polymer with PFN/Al bilayer cathode. Synth Met. 2011;161(17–18):1982.

    Article  CAS  Google Scholar 

  132. Zhang K, Zhong C, Liu S, Liang A-H, Dong S, Huang F. High efficiency solution processed inverted white organic light emitting diodes with a cross-linkable amino-functionalized polyfluorene as a cathode interlayer. J Mater Chem C. 2014;2(17):3270.

    Article  CAS  Google Scholar 

  133. Peng Z, Zhang Y, Xia Y, Xiong K, Cai C, Xia L, Hu Z, Zhang K, Huang F, Hou L. One-step coating inverted polymer solar cells using a conjugated polymer as an electron extraction additive. J Mater Chem A. 2015;3(41):20500.

    Article  CAS  Google Scholar 

  134. Wang C, Luo Y, Zheng J, Liu L, Xie Z, Huang F, Yang B, Ma Y. Spontaneous interfacial dipole orientation effect of acetic acid solubilized PFN. ACS Appl Mater Interfaces. 2018;10(12):10270.

    Article  CAS  Google Scholar 

  135. Li D, Sun C, Li H, Shi H, Shai X, Sun Q, Han J, Shen Y, Yip HL, Huang F. Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. Chem Sci. 2017;8(6):4587.

    Article  CAS  Google Scholar 

  136. Sun C, Wu Z, Yip HL, Zhang H, Jiang XF, Xue Q, Hu Z, Hu Z, Shen Y, Wang M. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv Energy Mater. 2016;6(5):1501534.

    Article  Google Scholar 

  137. Wang J, Lin K, Zhang K, Jiang XF, Mahmood K, Ying L, Huang F, Cao Y. Crosslinkable amino-functionalized conjugated polymer as cathode interlayer for efficient inverted polymer solar cells. Adv Energy Mater. 2016;6(11):1502563.

    Article  Google Scholar 

  138. Zhu L, Song C, Li X, Wang YC, Zhang W, Sun X, Zhang W, Fang J. A benzobis (thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells. J Mater Chem C. 2017;5(41):10777.

    Article  CAS  Google Scholar 

  139. Wan L, Li X, Song C, He Y, Zhang W. Benzobis (thiadiazole)-based small molecules as efficient electron transporting materials in perovskite solar cells. Sol Energy Mater Sol Cells. 2019;191(7):437.

    Article  CAS  Google Scholar 

  140. Li H, Zhang W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem Rev. 2020;120(18):9835.

  141. Jeong M, Choi IW, Go EM, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi HW, Lee J, Bae JH, Kwak SK, Kim DS, Yang C. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science. 2020;369(6511):1615.

    Article  CAS  Google Scholar 

  142. Lian J, Lu B, Niu F, Zeng P, Zhan X. Electron-transport materials in perovskite solar cells. Small Methods. 2018;2(10):1800082.

    Article  Google Scholar 

  143. Mao GP, Wang W, Shao S, Sun XJ, Chen SA, Li MH, Li HM. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018;37(1): 5.

  144. Haider M, Yang JL. Efficient and stable perovskite–silicon two-terminal tandem solar cells. Rare Met.  2020;39(7):745.

    Article  CAS  Google Scholar 

  145. Huang T, Liu H, Bang Y, Wang Y, Liang Y, Wang X, Zhang Y, Xie S, Zeng Z, Tang BZ. Spiro-conjugated indenodiarylethenes: enabling steric-induced electronic tuning of photochromic and photoluminescent properties by spiro-conjugation. Sci China Chem. 2020;63(11):1659.

    Article  CAS  Google Scholar 

  146. Zhou Z, Xie S, Chen X, Tu Y, Xiang J, Wang J, He Z, Zeng Z, Tang BZ. Spiro-functionalized diphenylethenes: suppression of a reversible photocyclization contributes to the aggregation-induced emission effect. J Am Chem Soc. 2019;141(25):9803.

    Article  CAS  Google Scholar 

  147. Fagiolari L, Bella F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy Environ Sci. 2019;12(12):3437.

    Article  CAS  Google Scholar 

  148. Zhou J, Zhu W, Zeng M, Yang Q, Li P, Lan L, Peng J, Li Y, Fei H, Cao Y. Aromatic inorganic acid radical. Sci China Chem. 2019;62(12):1656.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51973063), the Pearl River S&T Nova Program of Guangzhou (No. 201710010194) and the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2019TQ05C890).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Li, Y. Interface materials for perovskite solar cells. Rare Met. 40, 2993–3018 (2021). https://doi.org/10.1007/s12598-020-01696-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01696-8

Keywords

Navigation