Skip to main content
Log in

Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method

  • Communication
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, an II–VI group semiconductor zinc telluride (ZnTe) single crystal is prepared by a novel vertical Bridgman method using Te as flux. The initial mole ratio of Zn/Te = 3:7 is designed for raw material synthesis. ZnTe polycrystalline combined with rich Te is effectively fabricated through rocking technique at 1100 °C. A Φ 25 mm × 65 mm ZnTe boule is successfully grown under a ~ 40 °C·cm−1 temperature gradient with a growth speed of 5 mm·day−1. The as-grown ZnTe crystal has a standard 1:1 stoichiometric ratio and pure F43m phase structure. The maximum transmittance perpendicular to (110) plane is about 64%, and the band gap (Eg) is tested to be 2.225 eV. Terahertz (THz) examination results demonstrate that the time of the highest THz signal is around 17 ps and the frequency of the highest THz transmission is about 0.78 THz, implying that the ZnTe crystal grown by the present Te flux vertical Bridgman method has a good feasibility for THz application.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hieu NM, Lam DV, Truong HT, Chinh ND, Qucang ND, Hung NM, Phuoc CV, Lee SM, Jeong JR, Kim C, Kim D. ZnTe-coated ZnO nanorods: hydrogen sulfide nano-sensor purely controlled by pn junction. Mater Des. 2020;191:108628.

    Article  Google Scholar 

  2. Pandey N, Kumar B, Dwivedi DK. Synthesis and characterization of pure and Sb/Sn doped ZnTe for solar cell application. Mater Res Express. 2019;6:096425.

    Article  CAS  Google Scholar 

  3. Alfadhili FK, Phillips AB, Liyanage GK, Gibbs JM, Jamarkattel MK, Heben MJ. Controlling band alignment at the back interface of cadmium telluride solar cells using ZnTe and Te buffer layers. Mrs Adv. 2019. https://doi.org/10.1557/adv.2019.31.

    Article  Google Scholar 

  4. Lim KH, Choi JC, Man MT, Lee HS. Influence of CdTe thickness on structural and optical properties of CdTe/ZnTe quantum dots on Si substrates. J Korean Phys Soc. 2018;72(2):294.

    Article  CAS  Google Scholar 

  5. Yoshino K, Memon A, Yoneta M, Ohmori K, Saito H, Ohishi M. Optical characterization of the ZnTe pure-green LED. Phys Status Solidi. 2015;229(2):977.

    Article  Google Scholar 

  6. Li J, Diercks DR, Ohno TR, Warren CW, Lonergan MC, Beach JD, Wolden CA. Controlled activation of ZnTe: Cu contacted CdTe solar cells using rapid thermal processing. Sol Energ Mat Sol C. 2015;133:208.

    Article  CAS  Google Scholar 

  7. Che SB, Nomura I, Kikuchi A, Kishino K. Development of yellow-green LEDs and LDs using MgZnCdSe-BeZnTe superlattices on InP substrates by MBE. Phys Status Solidi. 2010;241(3):739.

    Article  Google Scholar 

  8. Rioux D, Niles DW, Höchst H. ZnTe: a potential interlayer to form low resistance back contacts in CdS/CdTe solar cells. J Appl Phys. 1993;73(12):8381.

    Article  CAS  Google Scholar 

  9. Turchinovich D, Dijkhuis JI. Performance of combined ZnTe crystals in an amplified THz time-domain spectrometer. Opt Commun. 2007;96(1):270.

    Google Scholar 

  10. Kroger FA. The P-T-x phase diagram of the system zinc-tellurium. J Phys Chem A. 1965;69(10):3367.

    Article  Google Scholar 

  11. Feltgen T, Greenberg JH, Guskov AN. P-T-X phase equilibrium studies in Zn-Te for crystal growth by the Markov method. Int J Inorg Mater. 2001;3(8):1241.

    Article  CAS  Google Scholar 

  12. Cheng MK, Liang J, Xu J, Lai YH, Ho SK, Tam KW, Sou IK. MBE-grown zincblende MnSe1−xTex thin films on ZnTe. J Cryst Growth. 2019;511:19.

    Article  CAS  Google Scholar 

  13. Wei Z, Xu Y, Xiao B, Gao Z, Zhang B, Yu J, Dong J, Jie W. Homogenization of Te-rich grown ZnTe bulk crystals by annealing under Zn vapor. CrystEngComm. 2019;21(2):283.

    Article  CAS  Google Scholar 

  14. Wang Y, Li H, Yang T, Zou Z, Qi Z, Ma L, Chen J. Space-confined physical vapour deposition of high quality ZnTe nanosheets for optoelectronic application. Mater Lett. 2019;238(1):309.

    Article  CAS  Google Scholar 

  15. Asahi T, Yabe T, Sato K, Arakawa A. Growth of large diameter ZnTe single crystals by the LEK method. J Alloys Compd. 2004;371(1–2):2.

    Article  CAS  Google Scholar 

  16. Arakawa A, Asahi T, Sato K. Growth and characterization of large diameter ZnTe single crystals. Phys Status Solidi. 2002;229(1):11.

    Article  CAS  Google Scholar 

  17. Fang ZQ, Look DC. Comparison of deep centers in semi-insulating liquid-encapsulated Czochralski and vertical-gradient freeze GaAs. J Appl Phys. 1991;69(12):8177.

    Article  Google Scholar 

  18. Lei H, Liu C, Xie P, Wei Y, Lu Z, Zhang B, Du Y, Dong J, Jie W. Growth of large-size high-quality ZnTe bulk crystals by traveling solvent melting zone method. J Alloys Compd. 2019;779(30):706.

    Article  CAS  Google Scholar 

  19. Trigubó AB, Stefano MCD, Gilabert U, Martinez AM, Elia RD, Cánepa H, Heredia E, Aguirre MH. TEM, chemical etching and FTIR characterization of ZnTe grown by physical vapor transport. Cryst Res Technol. 2010;45(8):817.

    Article  Google Scholar 

  20. Korostelin YV, Kozlovsky VI, Shapkin PV. Seeded-vapour-phase free growth and characterization of ZnTe single crystals. J Cryst Growth. 2000;214:870.

    Article  Google Scholar 

  21. Yang R, Jie W, Liu H. Growth of ZnTe single crystals from Te solution by vertical Bridgman method with ACRT. J Cryst Growth. 2014;400:27.

    Article  CAS  Google Scholar 

  22. Jin M, Xu JY, Fan SJ, Shi ML. Evaluation of PZNT ferroelectric crystals grown by different methods. Inter Ferroelectr. 2008;96(1):82.

    Article  CAS  Google Scholar 

  23. Harada K, Hosono Y, Saitoh S, Yamashita Y. Crystal growth of Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 using a crucible by the supported Bridgman method. Jpn J Appl Phys. 2000;39(5):3117.

    Article  CAS  Google Scholar 

  24. Xu G, Luo H, Guo Y, Gao Y, Xu H, Qi Z, Zhong W, Yin Z. Growth and piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by the modified Bridgman technique. Solid State Commun. 2001;120(7–8):321.

    Article  CAS  Google Scholar 

  25. Duan Z, Xu G, Wang X, Yang D, Pan X, Wang P. Electrical properties of high Curie temperature (1−x)Pb(In1/2Nb1/2)O3xPbTiO3 single crystals grown by the solution Bridgman technique. Solid State Commun. 2005;134(8):559.

    Article  CAS  Google Scholar 

  26. Li XH, Xu JY, Jin M, Shen H, Li XM. Electrical and optical properties of bulk ZnO single crystal grown by flux bridgman method. Chinese Phys Lett. 2006;1(1):3356.

    Google Scholar 

  27. Jin M, Lin SQ, Li W, Chen ZW, Li RB, Wang XH, Chen YX, Pei YZ. Fabrication and thermoelectric properties of single crystal argyrodite Ag8SnSe6. Chem Mater. 2019;31(7):2603.

    Article  CAS  Google Scholar 

  28. Jin M, Shi XL, Feng TL, Liu WD, Feng HF, Pantelides ST, Jiang J, Chen YX, Du Y, Zou J, Chen ZG. Super large Sn1−xSe single crystals with excellent thermoelectric performance. ACS Appl Mater Inter. 2019;11:8051.

    Article  CAS  Google Scholar 

  29. Jin M, Tang ZQ, Zhang RL, Zhou LN, Chen YQ, Zhao S, Chen YX, Wang XH, Li RB. Growth of GaSb crystal and evaluation of its thermoelectric properties along (111) plane. Cryst Res Technol. 2020;55:1900156.

    Article  CAS  Google Scholar 

  30. Jin M, Shen H, Fan SJ, He QB, Xu JY. Industrial growth and characterization of Si-doped GaAs crystal by a novel multi-crucible Bridgman method. Cryst Res Technol. 2017;52(6):1700052.

    Article  Google Scholar 

  31. Shkir M, Bhagavannarayana G, Wahab MA, Maurya KK. Characterization of ZnTe single crystal grown by Vertical Bridgman Technique using two zone tubular furnace: an important material for optoelectronic devices. Optik-Int J Light Electron Opt. 2013;124(15):1995.

    Article  CAS  Google Scholar 

  32. Xiao B, Zhu MQ, Zhang BB, Dong JP, Ji LL, Yu H, Sun XY, Jie WQ, Xu YD. Optical and electrical properties of vanadium-doped ZnTe crystals grown by the temperature gradient solution method. Opt Mater Express. 2018;8(2):431.

    Article  CAS  Google Scholar 

  33. Xu YD, Bai W, Gao LJ, Ji LL, Xiao B, Zhang CH, Jin BB, Jie WQ. Comparison of ZnTe bulk crystals grown by the temperature gradient solvent method using elemental and compound materials. Opt Mater Express. 2016;6(10):3309.

    Article  CAS  Google Scholar 

  34. Liu H, Bai W, Feng J, Jie W. The synthesis of large-diameter ZnTe crystal for THz emitting and detection. J Cryst Growth. 2017;475:115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shanghai (Nos. 19ZR1419900, 19ZR1420100) and Shanghai Engineering Research Center of Hot Manufacturing (No. 18DZ2253400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Jin or Jia-Yue Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Yang, WH., Wang, XH. et al. Growth and characterization of ZnTe single crystal via a novel Te flux vertical Bridgman method. Rare Met. 40, 858–864 (2021). https://doi.org/10.1007/s12598-020-01601-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01601-3

Keywords

Navigation