Skip to main content
Log in

The microstructural evolution and wear properties of Ni60/high-aluminum bronze composite coatings with directional structure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The directional structure of Ni60/high-aluminum bronze composite coating was formed using induction remelting and forced cooling. The microstructural evolution and the characteristics of interface growth were studied. The results showed that the remelted coating formed metallurgical bonding with the substrate. The microstructures changed from plane crystal to dendrite, cellular dendrite, fine cellular dendrite, and then to dendrite again with the increase in the cooling rate. The crystal grew along the heat flow direction and had (111) and (200) preferred orientations when the cooling rate was 1.886 ml·min−1·mm−2. The plane crystal, dendrite and cellular dendrite were mainly composed of compounds and solid solutions with Ni, Fe and Cu, and they were surrounded by strengthening phases composed of Cr, C and B. The grain boundary of directional structure coatings showed the characteristic of regular eutectic growth, but grain boundary of remelted coating presented characteristic of divorced eutectic growth. The wear resistance of directional structure coatings is better than that of remelted coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He L, Tan YF, Tan H, Tu YQ, Zhang ZW. Microstructure and tribological properties of WC-CeO2/Ni-base alloy composite coatings. Rare Met Mater Eng. 2014;43(4):823.

    Article  CAS  Google Scholar 

  2. Wang X, Zhu LF, Zhou ZM, Liu G, Liu EY, Zeng ZX, Wu XD. Tribological properties of WC-reinforced Ni-based coatings under different lubricating conditions. J Therm Spray Technol. 2015;24(4):1323.

    Article  CAS  Google Scholar 

  3. Hu ZL, Pang Q, Ji GQ, Wu GH. Mechanical behaviors and energy absorption properties of Y/Cr and Ce/Cr coated open-cell nickel-based alloy foams. Rare Met. 2018;37(8):650.

    Article  CAS  Google Scholar 

  4. Jin H, Wang YY, Wang YT, Yang HB. Synthesis and properties of electrodeposited Ni-CeO2 nano-composite coatings. Rare Met. 2018;37(2):148.

    Article  CAS  Google Scholar 

  5. Bai MW, Song B, Reddy L, Hussain T. Preparation of MCrAlY-Al2O3 composite coatings with enhanced oxidation resistance through a novel powder manufacturing process. J Therm Spray Technol. 2019;28(3):433.

    Article  CAS  Google Scholar 

  6. Luo WY, Liu YZ, Luo Y, Wu M. Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering. J Alloys Compd. 2018;754:163.

    Article  CAS  Google Scholar 

  7. Zhang YY, Brodusch N, Descartes S, Shockley JM, Gauvin R, Chromik RR. The effect of submicron second-phase particles on the rate of grain refinement in a copper-oxygen alloy during cold spray. J Therm Spray Technol. 2017;26(7):1509.

    Article  CAS  Google Scholar 

  8. Huang K, Marthinsen K, Zhao Q, Logé RE. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog Mater Sci. 2018;92:284.

    Article  CAS  Google Scholar 

  9. Gao Y, Luo BH, Jing HB, Chen W, Bai ZH, Zhang WW. Vacuum sintering of WC-Fe-Ni-Co cemented carbides. Chin J Rare Met. 2018;42(5):477.

    Google Scholar 

  10. Alam S, Sasaki S, Shimura H. Friction and wear characteristics of aluminum bronze coatings on steel substrates sprayed by a low pressure plasma technique. Wear. 2001;248(1–2):75.

    Article  CAS  Google Scholar 

  11. Li WS, Wang ZP, Lu Y, Yuan LH, Xiao RZ, Zhao XD. Corrosion and wear behaviors of Al-bronzes in 5.0% H2SO4 solution. Trans Nonferrous Met Soc China. 2009;19(2):311.

    Article  CAS  Google Scholar 

  12. Yang X, Li X, Yang X, Lu Y, Wang P, Li W. Preparation of multivariate multiphase composite coating of Ni60/high aluminum bronze and its microstructure characteristics. J Harbin Eng Univ. 2016;37(3):461.

    Google Scholar 

  13. Glicksman ME. Handbook of Crystal Growth. Edited by Nishinaga T. Boston: Elsevier B.V. 2015. 669.

  14. Qu M, Liu L, Cui Y, Liu FB. Interfacial morphology evolution in directionally solidified Al-15% Cu alloy. Trans Nonferrous Met Soc China. 2015;25(2):405.

    Article  CAS  Google Scholar 

  15. Yang C, Xu QY, Liu BC. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J Mater Sci. 2018;53(13):9755.

    Article  CAS  Google Scholar 

  16. Liu H, Xuan WD, Xie XL, Yu JB, Wang J, Li X, Zhong YB, Ren ZM, Wang H, Dai YM. Effect of a high magnetic field on solidification structure in directionally solidified NiAl-Cr(Mo)-Hf eutectic alloy. J Alloys Compd. 2018;737:74.

    Article  CAS  Google Scholar 

  17. Yang XC, Li GL, Wang HD, Dong TS, Kang JJ. Effect of flame remelting on microstructure and wear behaviour of plasma sprayed NiCrBSi-30%Mo coating. Surf Eng. 2016;34(3):181.

    Article  Google Scholar 

  18. Dong TS, Liu L, Li GL, Wang R, Yuan JM, Feng Y. Effect of induction remelting on microstructure and wear resistance of plasma sprayed NiCrBSiNb coatings. Surf Coat Technol. 2019;364:347.

    Article  CAS  Google Scholar 

  19. Lu Y, Ma JZ, Yang XT, Xiao RZ, Yang XW. Investigation of organization structure optimized by Ni60 on high-aluminum copper alloy coating prepared by supersonic plasma spraying-induction remelting. J Fun Mater. 2014;45(7):7108.

    CAS  Google Scholar 

  20. Yang XT, Wang PC, Li X, Lu Y, Xiao RZ. Evolution characteristic of microstructure of Ni-based alloy coatings and their properties under complex process. Rare Met Mater Eng. 2017;46(3):693.

    CAS  Google Scholar 

  21. Liang B, Zhang Z, Guo H. Comparison on the microstructure and wear behaviour of flame sprayed Ni-based alloy coatings remelted by flame and induction. Trans Indian Inst Met. 2016;70(7):1.

    Google Scholar 

  22. Schmelzer JWP, Abyzov AS. How do crystals nucleate and grow: Ostwald’s rule of stages and beyond. In: Šesták J, Hubík P, Mareš J, editors. Thermal Physics and Thermal Analysis. Switzerland: Springer; 2017. 195.

    Chapter  Google Scholar 

  23. McLean M. Directionally solidified materials for high temperature service. Br Corros J. 1984;19(4):154.

    Article  Google Scholar 

  24. Huang XR, Han ZQ, Liu BC. Study on the effect of pressure on the equilibrium and stability of the solid-liquid interface in solidification of binary alloys. Sci China Technol Sci. 2011;54(2):479.

    Article  CAS  Google Scholar 

  25. Liu L, Hang TW, Zhang J, Fu HZ. Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification. Mater Let. 2007;61(1):227.

    Article  CAS  Google Scholar 

  26. Hu HQ. Principle of Metal Solidification. Beijing: China Machine Press; 2000. 13.

    Google Scholar 

  27. Gao Y, Wang CL, Huang JQ, Huang XF. Microstructure and wear resistance of Ni60 layer prepared by high-frequency induction cladding. Rare Met Mater Eng. 2011;40(S2):309.

    Google Scholar 

  28. Chen YD, Zheng WW, Zheng YR, Feng Q. Microstructural evolution and corresponding stress rupture property in DZ125 alloy after thermal exposure. Chin J Rare Met. 2018;42(10):1009.

    Google Scholar 

  29. Liu XZ, Shen QW, Liu XZ, Chen J, Zhu LW, Qi J. Effect of heat treatment temperature on the spectral properties of Cu-Ni coating. Spectrosc Spec Anal. 2015;35(4):1094.

    CAS  Google Scholar 

  30. Yang XT, Wang ZP, Lu Y, Li WS, Li X, Liu JZ. Characteristics of high-aluminium copper alloy coating made by supersonic plasma spraying and induction refusion composite technology. J Harbin Eng Univ. 2012;33(7):906.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51365024) and Zhejiang Provincial Natural Science Foundation of China (No. LGG19E010003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XT., Li, XQ., Yang, QB. et al. The microstructural evolution and wear properties of Ni60/high-aluminum bronze composite coatings with directional structure. Rare Met. 40, 952–960 (2021). https://doi.org/10.1007/s12598-020-01563-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01563-6

Keywords

Navigation