Skip to main content
Log in

Temperature-dependent structural, morphological and optical properties of chemical bath-deposited CdS films

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) films were grown on top of the fluorine-doped tin oxide (FTO) coated glass substrates at four different bath temperatures by chemical bath deposition (CBD) technique. X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectrometry, energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscope (FESEM), photoluminescence (PL) and Fourier-transform infrared (FTIR) analyses were employed to examine the morphological and optical properties of deposited films. XRD studies confirmed the cubic crystalline nature of the deposited films which improved with increase in deposition temperature, and EDX along with FESEM study showed that the films were smooth and uniform with appropriate chemical composition. Band-gap values of the CBD CdS films calculated by UV–Vis spectrometry were found to be in the range of 2.32–2.39 eV. A strong blue band and a weak green band were observed in PL emission spectra. C–S, Cd-S and S–C–N vibrations were found by FTIR spectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balaji G, Balasundaraprabhu R, Prasanna S, Prabavathy N, Venkatraman MR, Asokan V, Muthukumarasamy N, Kannan MD, Sivakumaran K. Investigations on hot-wall deposited Cadmium Sulphide buffer layer for thin film solar cell. Mater Lett. 2018;222:82.

    Article  CAS  Google Scholar 

  2. Raja LA, Thirumoorthy P, Karthik A, Subramanian R, Rajendran V. Effect of EDTA on cadmium sulfide thin films for oxygen gas sensor applications. J Alloys Compd. 2017;706:470.

    Article  Google Scholar 

  3. Bakiyaraj G, Krishna JB, Taki GS, Selvaraju K, Dhanasekaran R. 45 keV N5+ ions induced spikes on CdS thin films: morphological, structural and optical properties. Appl Surf Sci. 2018;449:233.

    Article  CAS  Google Scholar 

  4. Ziabari AA, Ghodsi FE. Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: effects of post-heat treatment. Sol Energy Mater Sol Cells. 2012;105:249.

    Article  Google Scholar 

  5. Momeni MM, Ghayeb Y, Ezati F. Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J Colloid Interface Sci. 2018;514:70.

    Article  CAS  Google Scholar 

  6. Momeni MM, Mozafari AA. The effect of number of SILAR cycles on morphological, optical and photo catalytic properties of cadmium sulfide–titania films. J Mater Sci Mater Electron. 2016;27(10):10658.

    Article  CAS  Google Scholar 

  7. Faraj MG, Ibrahim K. Comparison of cadmium sulfide thin films deposited on glass and polyethylene terephthalate substrates with thermal evaporation for solar cell applications. J Mater Sci Mater Electron. 2012;23(6):1219.

    Article  CAS  Google Scholar 

  8. Ojeda-Barrero G, Oliva-Avilés AI, Oliva AI, Maldonado RD, Acosta M, Alonzo-Medina GM. Effect of the substrate temperature on the physical properties of sprayed-CdS films by using an automatized perfume atomizer. Mater Sci Semicond Process. 2018;79:7.

    Article  CAS  Google Scholar 

  9. El-rouby M, Aliyev AS. Electrical, electrochemical and photo-electrochemical studies on the electrodeposited n-type semiconductor hexagonal crystalline CdS thin film on nickel substrate. J Mater Sci Mater Electron. 2014;25(12):5618.

    Article  CAS  Google Scholar 

  10. Ghayeb Y, Momeni MM. Efficient sunlight-driven photocatalytic activity of chromium TiO2 nanotube nanocomposites prepared by anodizing and chemical bath deposition. J Mater Sci Mater Electron. 2015;26(7):5335.

    Article  CAS  Google Scholar 

  11. Momeni MM, Nazari Z. Preparation of TiO2 and WO3–TiO2 nanotubes decorated with PbO nanoparticles by chemical bath deposition process: a stable and efficient photo catalyst. Ceram Int. 2016;42(7):8691.

    Article  CAS  Google Scholar 

  12. Sinha T, Lilhare D, Khare A. Effects of various parameters on structural and optical properties of CBD-grown ZnS thin films: a review. J Electron Mater. 2018;47(2):1730.

    Article  CAS  Google Scholar 

  13. Slonopas A, Ryan H, Foley B, Sun Z, Sun K, Globus T, Norris P. Growth mechanisms and their effects on the opto-electrical properties of CdS thin films prepared by chemical bath deposition. Mater Sci Semicond Process. 2016;52:24.

    Article  CAS  Google Scholar 

  14. Zhang H, Ma X, Yang D. Effects of complexing agent on CdS thin films prepared by chemical bath deposition. Mater Lett. 2004;58(1–2):5.

    Article  CAS  Google Scholar 

  15. Mahmood W, Ali J, Zahid I, Thomas A, Ul Haq A. Optical and electrical studies of CdS thin films with thickness variation. Optik. 2018;158:1558.

    Article  CAS  Google Scholar 

  16. Yücel E, Şahin O. Effect of pH on the structural, optical and nanomechanical properties of CdS thin films grown by chemical bath deposition. Ceram Int. 2016;42(5):6399.

    Article  Google Scholar 

  17. Moualkia H, Hariech S, Aida MS. Structural and optical properties of CdS thin films grown by chemical bath deposition. Thin Solid Films. 2009;518(4):1259.

    Article  CAS  Google Scholar 

  18. Zhou L, Hu X, Wu S. Effects of deposition temperature on the performance of CdS films with chemical bath deposition. Surf Coat Technol. 2013;228:S171.

    Article  CAS  Google Scholar 

  19. Momeni MM, Mahvari M, Ghayeb Y. Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel. J Electroanal Chem. 2019;832:7.

    Article  CAS  Google Scholar 

  20. Zhao Q, Hou L, Huang R, Li S. Surfactant-assisted growth and characterization of CdS nanorods. Inorg Chem Commun. 2003;6(12):1459.

    Article  CAS  Google Scholar 

  21. Sathish M, Viswanath RP. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: effect of particle size, noble metal and support. Catal Today. 2007;129(3–4):421.

    Article  CAS  Google Scholar 

  22. Sanap VB, Pawar BH. Growth and characterization of nanostructured CdS thin films by chemical bath deposition technique. Chalco Lett. 2009;6(9):415.

    CAS  Google Scholar 

  23. Momeni MM, Ghayeb Y, Mozafari AA. Optical and photo catalytic characteristics of Ag2S/TiO2 nanocomposite films prepared by electrochemical anodizing and SILAR approach. J Mater Sci Mater Electron. 2016;27(11):11201.

    Article  CAS  Google Scholar 

  24. Priya NS, Kamala SS, Anbarasu V, Azhagan SA, Saravanakumar R. Characterization of CdS thin films and nanoparticles by a simple Chemical Bath Technique. Mater Lett. 2018;220:161.

    Article  CAS  Google Scholar 

  25. Lee JH, Song WC, Yi JS, Yang KJ, Han WD, Hwang J. Growth and properties of the Cd1-xZnxS thin films for solar cell applications. Thin Solid Films. 2003;431:349.

    Article  Google Scholar 

  26. Liu F, Lai Y, Liu J, Wang B, Kuang S, Zhang Z, Li J, Liu Y. Characterization of chemical bath deposited CdS thin films at different deposition temperature. J Alloys Compd. 2010;493(1–2):305.

    Article  CAS  Google Scholar 

  27. Muthusamy M, Muthukumaran S. Effect of Cu-doping on structural, optical and photoluminescence properties of CdS thin films. Optik. 2015;126(24):5200.

    Article  CAS  Google Scholar 

  28. Wang C, Wang HM, Fang ZY. Influence of Mn doping on the microstructure and optical properties of CdS. J Alloys Compd. 2009;486(1–2):702.

    Article  CAS  Google Scholar 

  29. Islam MA, Haque F, Rahman KS, Dhar N, Hossain MS, Sulaiman Y, Amin N. Effect of oxidation on structural, optical and electrical properties of CdS thin films grown by sputtering. Optik. 2015;126(21):3177.

    Article  CAS  Google Scholar 

  30. Chander S, Dhaka MS. Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells. Thin Solid Films. 2017;638:179.

    Article  CAS  Google Scholar 

  31. Maticiuc N, Katerski A, Danilson M, Krunks M, Hiie J. XPS study of OH impurity in solution processed CdS thin films. Sol Energy Mater Sol Cells. 2017;160:211.

    Article  CAS  Google Scholar 

  32. Esakkiraj E, Kadhar SS, Henry J, Mohanraj K, Kannan S, Barathan S, Sivakumar G. Optostructral and vibrational characteristics of Cu: CdS nanoparticles by precipitation method. Optik. 2013;124(21):5229.

    Article  CAS  Google Scholar 

  33. Otto K, Acik IO, Tõnsuaadu K, Mere A, Krunks M. Thermoanalytical study of precursors for In2S3 thin films deposited by spray pyrolysis. J Therm Anal Calorim. 2011;105(2):615.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Metallurgical Engg., NIT Raipur, India, for their help in performing XRD and SEM studies at their center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, T., Lilhare, D. & Khare, A. Temperature-dependent structural, morphological and optical properties of chemical bath-deposited CdS films. Rare Met. 40, 701–707 (2021). https://doi.org/10.1007/s12598-019-01331-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01331-1

Keywords

Navigation