Skip to main content
Log in

Determination of mechanical properties of pure zirconium processed by surface severe plastic deformation through nanoindentation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Commercially pure zirconium was processed by the surface mechanical attrition treatment (SMAT), and the microstructure observation showed that a gradient structure was induced. Nanoindentation measurements were taken to obtain the load–displacement curves at different depths below the treated surface. Using dimensional analysis, the local yield stress, hardness, strain hardening exponent, and elastic modulus at the corresponding depths were derived. The results showed that the yield stress and hardness varied with depth, while the strain hardening exponent and elastic modulus were approximately invariable. The finite element method was used to simulate nanoindentation at different depths below the treated surface to verify the derivation of the local elastic–plastic constitutive relationship. Stress–strain curves were computed for the treated samples through the rule of mixtures, and they agreed well with the experimental results. The analysis showed that the surface and subsurface hardening layers as well as the transition layer shared a high load applied to the samples, even though their volume fraction was small.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang CH, Yu F, Wang YM, He XM. Fatigue property of commercial pure zirconium subjected to surface nanocrystallization. Chin J Rare Met. 2017;41(3):284.

    Google Scholar 

  2. Xin C, Sun QY, Xiao L, Sun J. Biaxial fatigue property enhancement of gradient ultra-fine-grained Zircaloy-4 prepared by surface mechanical rolling treatment. J Mater Sci. 2018;53(17):12492.

    Article  Google Scholar 

  3. Li YF, Chen C, Ranabhat J, Shen YF. Formation mechanism and mechanical properties of surface nanocrystallized Ti–6Al–4V alloy processed by surface mechanical attrition treatment. Rare Met. 2017. https://doi.org/10.1007/s12598-017-0988-4.

    Google Scholar 

  4. Chen HL, Yang J, Zhou H, Moering J, Yin Z, Gong YL, Zhao KY. Mechanical properties of gradient structure Mg alloy. Metall Mater Trans A. 2017;48(9):3961.

    Article  Google Scholar 

  5. Li YS, Li LZ, Nie JF, Cao Y, Zhao YH. Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures. J Mater Res. 2017;32(23):4443.

    Article  Google Scholar 

  6. Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng, A. 2004;375–377(1):38.

    Article  Google Scholar 

  7. Huang HW, Wang ZB, Lu J, Lu K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015;87:150.

    Article  Google Scholar 

  8. Li WL, Tao NR, Lu K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Mater. 2008;59(5):546.

    Article  Google Scholar 

  9. Tao NR, Sui ML, Lu J, Lu K. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostruct Mater. 1999;11(4):433.

    Article  Google Scholar 

  10. Liu G, Wang SC, Lou XF, Lu J, Lu K. Low carbon steel with nanostructured surface layer induced by high-energy shot peening. Scripta Mater. 2001;44(8–9):1791.

    Article  Google Scholar 

  11. Wang T, Wang DP, Liu G, Gong BM, Song NX. Investigations on the nanocrystallization of 40Cr using ultrasonic surface rolling processing. Appl Surf Sci. 2008;255(5):1824.

    Article  Google Scholar 

  12. Cherif A, Pyoun Y, Scholtes B. Effects of ultrasonic nanocrystal surface modification (UNSM) on residual stress state and fatigue strength of AISI 304. J Mater Eng Perform. 2010;19(2):282.

    Article  Google Scholar 

  13. Wang X, Li YS, Zhang Q, Zhao YH, Zhu YT. Gradient structured copper by rotationally accelerated shot peening. J Mater Sci Technol. 2017;33(7):758.

    Article  Google Scholar 

  14. Bahl S, Suwas S, Ungàr T, Chatterjee K. Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel. Acta Mater. 2017;122:138.

    Article  Google Scholar 

  15. Ye C, Telang A, Gill AS, Suslov S, Idell Y, Zweiacker K, Wiezorek JMK, Zhou Z, Qian D, Mannava SR, Vasudevan VK. Gradient nanostructure and residual stresses induced by ultrasonic nano-crystal surface modification in 304 austenitic stainless steel for high strength and high ductility. Mater Sci Eng, A. 2014;613:274.

    Article  Google Scholar 

  16. Fang TH, Li WL, Tao NR, Lu K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331(6024):1587.

    Article  Google Scholar 

  17. Xin C, Xu W, Sun QY, Xiao L, Sun J. Effect of SMRT on microstructure and mechanical properties of Zr-4 alloy. Rare Met Mater Eng. 2017;46(7):1954.

    Article  Google Scholar 

  18. Tsai MT, Huang JC, Tsai WY, Chou TH, Chen CY, Li TH, Jang JSC. Effects of ultrasonic surface mechanical attrition treatment on microstructures and mechanical properties of high entropy alloys. Intermetallics. 2018;93:113.

    Article  Google Scholar 

  19. Wu XL, Jiang P, Chen L, Zhang JF, Yuan FP, Zhu YT. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2(4):185.

    Article  Google Scholar 

  20. Li Y, Kang RK, Gao H, Wang JH, Lang YJ. Nanomechanical behaviors of (110) and (111) CdZnTe crystals investigated by nanoindentation. Rare Met. 2009;28(6):570.

    Article  Google Scholar 

  21. Amiri S, Chen X, Manes A, Giglio M. Investigation of the mechanical behaviour of lithium-ion batteries by an indentation technique. Int J Mech Sci. 2016;105:1.

    Article  Google Scholar 

  22. Yang GY, Peng H, Guo HB, Gong SK. Deposition of TiN/TiAlN multilayers by plasma-activated EB-PVD: tailored microstructure by jumping beam technology. Rare Met. 2017;36(8):651.

    Article  Google Scholar 

  23. Dhakar B, Chatterjee S, Sabiruddin K. Measuring mechanical properties of plasma-sprayed alumina coatings by nanoindentation technique. Mater Sci Technol. 2017;33(3):285.

    Article  Google Scholar 

  24. Liu Y, Zhao XH, Wang DP. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation. Mater Sci Eng, A. 2014;600:21.

    Article  Google Scholar 

  25. Huang L, Lu J, Troyon M. Nanomechanical properties of nanostructured titanium prepared by SMAT. Surf Coat Technol. 2006;201(1–2):208.

    Article  Google Scholar 

  26. Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49(19):3899.

    Article  Google Scholar 

  27. Lee J, Lee C, Kim B. Reverse analysis of nano-indentation using different representative strains and residual indentation profiles. Mater Des. 2009;30(9):3395.

    Article  Google Scholar 

  28. Zhang RY, Daymond MR, Holt RA. A finite element model of deformation twinning in zirconium. Mater Sci Eng, A. 2008;473(1–2):139.

    Article  Google Scholar 

  29. Zhang CH, Wang YM, He XM. Nanomechanical properties of zirconium processed by means of surface mechanical attrition treatment. In: TMS 2013 Annual Meeting and Exhibition, Supplemental Proceedings: Linking Science and Technology for Global Solutions. San Antonio; 2013. 579.

  30. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19(1):3.

    Article  Google Scholar 

  31. Wang YM, Yang HP, Zhang CH, Yu F. Analysis of the residual stress in zirconium subjected to surface severe plastic deformation. Met Mater Int. 2015;21(2):260.

    Article  Google Scholar 

  32. Zhang L, Han Y, Lu J. Nanocrystallization of zirconium subjected to surface mechanical attrition treatment. Nanotechnology. 2008;19(16):165706.

    Article  Google Scholar 

  33. Wang YM, Zhang CH, Zong YP, Yang HP. Experimental and simulation studies of particle size effects on tensile deformation behavior of iron matrix composites. Adv Compos Mater. 2013;22(5):299.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51674187 and 51671153), the Science and Technology Department of Shaanxi Province (No. 2017GY-115) and the Education Department of Shaanxi Province (No. 16JK1466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Mian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM., Zhuang, W., Yang, HP. et al. Determination of mechanical properties of pure zirconium processed by surface severe plastic deformation through nanoindentation. Rare Met. 38, 824–831 (2019). https://doi.org/10.1007/s12598-019-01302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01302-6

Keywords

Navigation