Skip to main content
Log in

Microstructure and mechanical properties of WC–Co-based cemented carbide with bimodal WC grain size distribution

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to improve the wear resistance of coarse-grained WC–Co cemented carbides, the fine WC powder were used to reinforce the metallic binder. These WC–Co-based cemented carbides having bimodal WC grain size distributions were synthesized by liquid phase sintering. For comparison, the cemented carbides having unimodal WC grain size distributions were synthesized. The microstructure, hardness, fracture toughness and wear resistance of these cemented carbides were investigated. The results show that adding fine WC powder is an effective method to improve the wear resistance of coarse-grained WC–Co cemented carbides. The WC size, mean free path and fracture toughness decrease with the addition of fine WC powder, while the hardness exhibits an opposite trend. The impact-wear coefficient of bimodal distribution cemented carbides is noticeably lower than that of the unimodal one with the same hardness, which means that the cemented carbides with bimodal grain structure have better combination of hardness and impact-abrasive wear resistance. The impact-abrasive wear mechanism of the bimodal cemented carbides is that the fine WC grains prevent abrasive wear and the coarse WC grains prevent impact wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saito H, Iwabuchi A, Shimizu T. Effects of Co content and WC grain size on wear of WC cemented carbide. Wear. 2006;261(2):126.

    Article  CAS  Google Scholar 

  2. Gee MG, Gant A, Roebuck B. Wear mechanisms in abrasion and erosion of WC/Co and related hardmetals. Wear. 2007;263(1):137.

    Article  CAS  Google Scholar 

  3. Konyashin I, Ries B. Wear damage of cemented carbides with different combinations of WC mean grain size and Co content. Part II. Laboratory performance tests on rock cutting and drilling. Int J Refract Met Hard Mater. 2014;45:230.

    Article  CAS  Google Scholar 

  4. Wang W, Lu ZC, Chen ZH, Zeng MQ, Wang H, Zhu M. Properties of WC–8Co hardmetals with plate-like WC grains prepared by plasma-assisted milling. Rare Met. 2016;35(10):763.

    Article  CAS  Google Scholar 

  5. Sun L, Yang T, Jia C, Xiong J. Effects of graphite on the microstructure and properties of ultrafine WC–11Co composites by spark plasma sintering. Rare Met. 2011;30(1):63.

    Article  CAS  Google Scholar 

  6. Beste U, Jacobson S. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons. Wear. 2008;264(11–12):1129.

    Article  CAS  Google Scholar 

  7. Torres Y, Tarrago JM, Coureaux D, Tarrés E, Roebuck B, Chan P, James M, Liang B, Tillman M, Viswanadham RK, Mingard KP, Mestra A, Llanes L. Fracture and fatigue of rock bit cemented carbides: mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading. Int J Refract Met Hard Mater. 2014;45:179.

    Article  CAS  Google Scholar 

  8. Norgren S, García J, Blomqvist A, Yin L. Trends in the P/M hardmetal industry. Int J Refract Met Hard Mater. 2015;48:31.

    Article  CAS  Google Scholar 

  9. Konyashin I, Ries B, Lachmann F. Near-nano WC–Co hardmetals: will they substitute conventional coarse-grained mining grades? Int J Refract Met Hard Mater. 2010;28(4):489.

    Article  CAS  Google Scholar 

  10. Yang GJ, Gao PH, Li CX, Li CJ. Simultaneous strengthening and toughening effects in WC-(nano WC–Co). Scr Mater. 2012;66(10):777.

    Article  CAS  Google Scholar 

  11. Liu C, Lin N, He Y, Wu C, Jiang Y. The effects of micron WC contents on the microstructure and mechanical properties of ultrafine WC-(micron WC–Co) cemented carbides. J Alloys Compd. 2014;594(4):76.

    Article  CAS  Google Scholar 

  12. Yang Q, Yang J, Yang H, Ruan J. The effects of fine WC contents and temperature on the microstructure and mechanical properties of inhomogeneous WC-(fine WC–Co) cemented carbides. Ceram Int. 2016;42(16):18100.

    Article  CAS  Google Scholar 

  13. Liu C, Lin N, He YH, Wang YC, Zhang X. Effect of coarse grained WC addition on microstructure and mechanical properties of WC–Co cemented carbide. Mater Sci Eng Powder Metall. 2014;19(1):123.

    Google Scholar 

  14. Chen SY, Zhang JX, Zhou SZ. Effect of the matching of coarse and fine WC powders on the mechanical properties and microstructures of WC–10%Co cemented carbides. Cem Carbide. 1994;11(3):138.

    Google Scholar 

  15. Schubert WD, Neumeister H, Kinger G, Lux B. Hardness to toughness relationship of fine-grained WC–Co hardmetals. Int J Refract Met Hard Mater. 1998;16(2):133.

    Article  CAS  Google Scholar 

  16. Du X, Wang J, Sun G, Man D. Effect of composition on impact-wear behavior of alloyed liner steels in corrosive condition. Mater Sci Eng A. 2008;477(1):277.

    Article  Google Scholar 

  17. Wang K, Du X, Youn K, Hayashi Y, Lee C, Koo B. Effect of impact energy on the impact-wear properties of low carbon high manganese alloy steels in corrosive conditions. Met Mater Int. 2008;14(6):689.

    Article  CAS  Google Scholar 

  18. Delano A, Lay S. Evolution of the WC grain shape in WC–Co alloys during sintering: effect of C content. Int J Refract Met Hard Mater. 2009;27(1):140.

    Article  Google Scholar 

  19. Lay S, Allibert CH, Christensen M, Wahnström G. Morphology of WC grains in WC–Co alloys. Mater Sci Eng A. 2008;486(1–2):253.

    Article  Google Scholar 

  20. Fang Z, Maheshwari P, Wang X, Sohn HY, Griffo A, Riley R. An experimental study of the sintering of nanocrystalline WC–Co powders. Int J Refract Met Hard Mater. 2005;23(4–6):249.

    Article  CAS  Google Scholar 

  21. Shatov AV, Firstov SA, Shatova IV. The shape of WC crystals in cemented carbides. Mater Sci Eng A. 1998;242(1–2):7.

    Article  Google Scholar 

  22. Yoon BK, Lee BA, Kang SJL. Growth behavior of rounded (Ti, W)C and faceted WC grains in a Co matrix during liquid phase sintering. Acta Mater. 2005;53(17):4677.

    Article  CAS  Google Scholar 

  23. Sun Y, Su W, Yang H, Ruan J. Effects of WC particle size on sintering behavior and mechanical properties of coarse grained WC–8Co cemented carbides fabricated by unmilled composite powders. Ceram Int. 2015;41(10):14482.

    Article  CAS  Google Scholar 

  24. Lee HC, Gurland J. Hardness and deformation of cemented tungsten carbide. Mater Sci Eng. 1978;33(1):125.

    Article  CAS  Google Scholar 

  25. Roebuck B. Terminology, testing, properties, imaging and models for fine grained hardmetals. Int J Refract Met Hard Mater. 1995;13(5):265.

    Article  CAS  Google Scholar 

  26. Lancaster JK. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear. 1967;10(2):103.

    Article  Google Scholar 

  27. Konyashin I, Schäfera F, Cooper R, Ries B, Mayer J, Weirich T. Novel ultra-coarse hardmetal grades with reinforced binder for mining and construction. Int J Refract Met Hard Mater. 2005;23(4–6):225.

    Article  CAS  Google Scholar 

  28. Jia K, Fischer TE. Abrasion resistance of nanostructured and conventional cemented carbides. Wear. 1996;200(1–2):206.

    Article  CAS  Google Scholar 

  29. Pirso J, Letunovits S, Viljus M. Friction and wear behaviour of cemented carbides. Wear. 2004;257(3–4):257.

    Article  CAS  Google Scholar 

  30. Gant AJ, Gee MG. Abrasion of tungsten carbide hardmetals using hard counterfaces. Int J Refract Met Hard Mater. 2006;24(1):189.

    Article  CAS  Google Scholar 

  31. Gant AJ, Gee MG, Roebuck B. Rotating wheel abrasion of WC/Co hardmetals. Wear. 2005;258(1–4):178.

    Article  CAS  Google Scholar 

  32. Engqvist H, Axén N. Abrasion of cemented carbides by small grits. Tribol Int. 1999;32(9):527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51101021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Jun Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, RJ., Lin, CG., Xie, XC. et al. Microstructure and mechanical properties of WC–Co-based cemented carbide with bimodal WC grain size distribution. Rare Met. 42, 2809–2815 (2023). https://doi.org/10.1007/s12598-018-1025-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1025-y

Keywords

Navigation