Skip to main content
Log in

Microstructure and magnetic properties of SmCo5 sintered magnets

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

SmCo5 sintered magnets with good thermal stability are mainly used in high-temperature field. In this study, two types of SmCoz powders with different nominal z values were mixed and synthesized into SmCo5 magnets by the traditional powder metallurgy method. The magnetic properties of the SmCo5 sintered magnet are maximum energy product of (BH)max = 172.29 kJ·m−3, remanence of Br = 7.47 × 105 A·m−1 and coercivity of Hci = 2.42 T. The results show that there are three coexisting phases in the magnet, which are SmCo5 phase, Sm2Co7 phase and Sm2O3 phase. The microstructural observation indicates that the average grain size in the magnet is about 8 μm, and the high coercivity of this magnet is attributed to these fine grains. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) results indicate that the magnet has a well-aligned (00l) orientation texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Strnat K, Hoffer G, Olson J, Ostertag W, Becker JJ. A family of new cobalt-base permanent magnet materials. J Appl Phys. 1967;38(3):1001.

    Article  CAS  Google Scholar 

  2. Strnat KJ, Strnat RMW. Rare earth-cobalt permanent magnets. J Magn Magn Mater. 1991;100(1–3):38.

    Article  CAS  Google Scholar 

  3. Campos MFD, Landgraf FJG, Machado R, Rodrigues D, Romero SA, Neiva AC, Missell FP. A model relating remanence and microstructure of SmCo5 magnets. J Alloys Compd. 1998;267(1–2):257.

    Article  Google Scholar 

  4. Zhao SH. First-principle study on the electronic structure and magnetic properties of Sm(Co, M)5. Wuhan: Huazhong University of Science and Technology; 2012. 21.

    Google Scholar 

  5. Menth A, Nagel H, Perkins RS. New high-performance permanent magnets based on rare earth-transition metal compounds. Ann Rev Mater Res. 1978;8(1):21.

    CAS  Google Scholar 

  6. Xu ML, Yue M, Li YQ, Wu Q, Gao Y. Structure and intrinsic magnetic properties of Sm(1−x)PrxCo5 (x = 0–0.6) compounds. Rare Met. 2016;35(8):627.

    Article  CAS  Google Scholar 

  7. Liu WQ, Chang C, Yue M, Yang JS, Zhang DT, Zhang JX, Liu YQ. Coercivity, microstructure, and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles. Rare Met. 2017;36(9):718.

    Article  CAS  Google Scholar 

  8. Larson P, Mazin II, Papaconstantopoulos DA. Calculation of magnetic anisotropy energy in SmCo5. J Magn Magn Mater. 2003;67(21):7.

    Article  Google Scholar 

  9. Velu EMT, Obermyer RT, Sankar SG, Wallace WE. PrCo5-based high-energy-density permanent magnets. J Less-Common Met. 1989;148(1):67.

    Article  Google Scholar 

  10. Shen Y, Laughlin DE, Velu EMT, Sankar SG. Microstructural studies of PrCo5 magnets. J Magn Magn Mater. 1991;94(1–2):57.

    Article  CAS  Google Scholar 

  11. Gutfleisch O. High-Temperature Samarium Cobalt Permanent Magnets. Dordrecht: Springer; 2009. 337.

    Google Scholar 

  12. Ohtake M, Nukaga Y, Kirino F, Futamoto M. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers. J Appl Phys. 2009;105(7):1703.

    Article  Google Scholar 

  13. Leupold HA, Rothwarf F, Breslin JT, Winter JJ, Tauber A, Paul DI. Contrasts in the coercivities of SmCo5 and Sm2Co17-type permanent magnets. J Appl Phys. 1982;53(3):2392.

    Article  CAS  Google Scholar 

  14. Xu X, Zhang H, Wang T, Li Y, Zhang D, Yue M. Local orientation texture analysis in nanocrystalline Sm0.6Pr0.4Co5 magnet and (SmCo5)0.6(PrCo5)0.4 composite magnet with strong magnetic anisotropy. J Alloys Compd. 2016;699:262.

    Article  Google Scholar 

  15. Kündig AA, Gopalan R, Ohkubo T, Hono K. Coercivity enhancement in melt-spun SmCo5 by Sn addition. Scr Mater. 2006;54(12):2047.

    Article  Google Scholar 

  16. Wang Z, Liu WQ, Zhang DT, Yue M, Huang XL, Li XL. Enhancement of corrosion resistance in sintered Nd-Fe-B permanent magnet doping with different CuZn5 contents. Rare Met. 2017;36(10):812.

    Article  Google Scholar 

  17. Tsui JBY, Strnat KJ. Sintering of PrCo5 magnets with Pr-Co alloy addition. IEEE Trans Magn. 1971;7(3):427.

    Article  CAS  Google Scholar 

  18. Fukuzaki T, Iwane H, Abe K, Doi T, Tamura R, Oikawa T. Effect of Zr, V, Nb, Mo, and Ta substitutions on magnetic properties and microstructure of melt-spun SmCo5 magnets. J Appl Phys. 2014;115(17):17A760.

    Article  Google Scholar 

  19. Foner S, Mcniff EJ, Martin DL, Benz MG. Magnetic properties of cobalt-samarium with a 24-MGOe energy product. Appl Phys Lett. 1972;20(11):447.

    Article  CAS  Google Scholar 

  20. Wallace W, Craig R, Gupta H, Hirosawa S. High energy magnets from PrCo5. IEEE Trans Magn. 1984;20(5):1599.

    Article  Google Scholar 

  21. De Campos MF, Yonamine T, Fukuhara M, Machado R, Romero SA, Landgraf FJG, Rodrigues D, Missell FP. Electron backscattered diffraction texture analysis of SmCo5 magnets. J Appl Phys. 2007;101(9):1015.

    Google Scholar 

  22. Yuan X, Yue M, Zhang D, Jin T, Zhang Z, Zuo J, Zhang J, Zhu J, Gao X. Orientation textures of grains and boundary planes in a hot deformed SmCo5 permanent magnet. CrystEngComm. 2014;16(9):1669.

    Article  CAS  Google Scholar 

  23. Khlopkov K, Gutfleisch O, Eckert D, Hinz D, Wall B, Rodewald W, Müller KH, Schultz L. Local texture in Nd–Fe–B sintered magnets with maximised energy density. J Alloys Compd. 2004;365(1–2):259.

    Article  CAS  Google Scholar 

  24. Buschow KHJ, Velge WAJJ, Buschow KHJ, Velge WAJJ. Permanent magnetic materials of rare earth-cobalt compounds. Z Angew Phys. 1969;1969(26):157.

    Google Scholar 

  25. Hoffer Strnat. Magnetocrystalline anisotropy of YCo5 and Y2Co17. IEEE Trans Magn. 1966;2(3):487.

    Article  Google Scholar 

  26. Chen JS, Zhang LN, Hu JF, Ding J. Highly textured SmCo5 (001) thin film with high coercivity. J Appl Phys. 2008;104(9):10.

    Google Scholar 

  27. Xue ZQ, Guo YQ. Correlation between valence electronic structure and magnetic properties in RCo5 (R = rare earth) intermetallic compound. Chin Phys B. 2016;25(6):063101.

    Article  Google Scholar 

  28. Strnat K. The recent development of permanent magnet materials containing rare earth metals. IEEE Trans Magn. 2003;6(2):182.

    Article  Google Scholar 

  29. Zhou SZ. Rear-Earth Permanent Magnets and Their Application. Beijing: Metallurgical Industry Press; 1990. 224.

    Google Scholar 

  30. Szmaja W. Studies of the domain structure of anisotropic sintered SmCo5 permanent magnets. J Magn Magn Mater. 2007;311(2):469.

    Article  CAS  Google Scholar 

  31. Yonamine T, Fukuhara M, Machado R, Missell FP. Electron back scattered diffraction study of SmCo magnets. J Magn Magn Mater. 2008;320(14):e77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the State Key Program of Natural Science Foundation of China (No. 51331003) and the International S&T Cooperation Program of China (No. 2015DFG52020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DT., Zhu, RC., Yue, M. et al. Microstructure and magnetic properties of SmCo5 sintered magnets. Rare Met. 39, 1295–1299 (2020). https://doi.org/10.1007/s12598-018-01198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-01198-8

Keywords

Navigation