Skip to main content
Log in

Magnetocaloric effect of Pr2Fe17−x Mn x alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Polycrystalline Pr2Fe17−x Mn x (x = 0, 1, and 2) alloys were studied by X-ray diffraction (XRD), heat capacity, ac susceptibility, and isothermal magnetization measurements. All the alloys adopt the rhombohedral Th2Zn17-type structure. The Curie temperature increases from 283 K at x = 0 to 294 K at x = 1, and then decreases to 285 K at x = 2. The magnetic phase transition at the Curie temperature is a typical second-order paramagnetic–ferromagnetic transition. For an applied field change from 0 to 5 T, the maximum −ΔS M for Pr2Fe17−x Mn x alloys with x = 0, 1, and 2 are 5.66, 5.07, and 4.31 J·kg−1·K−1, respectively. The refrigerant capacity (RC) values range from 458 to 364 J·kg −1, which is about 70 %–89 % that of Gd. The large, near room temperature ΔS M and RC values, chemical stability, and a high performance-to-cost ratio make Pr2Fe17−x Mn x alloys be selectable materials for room temperature magnetic refrigeration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franco V, Blázquez JS, Ingale B, Conde A. The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu Rev Mater Res. 2012;42(1):305.

    Article  Google Scholar 

  2. Gschneidner KA, Pecharsky VK Jr. Thirty years of near room temperature magnetic cooling: where we are today and future prospects. Int J Refig. 2008;31(6):945.

    Article  Google Scholar 

  3. Oesterreicher H, Parker FT. Magnetic cooling near Curie temperatures above 300 K. J Appl Phys. 1984;55(12):4334.

    Article  Google Scholar 

  4. Wang BZ, Wen M, Cao XM. The research of rare earth magnetic refrigerant materials. Met Funct Mater. 2000;7(4):24.

    Google Scholar 

  5. Mandal K, Yan A, Kerschl P, Handstein A, Gutfleisch O, Müller K-H. The study of magnetocaloric effect in R2Fe17 (R = Y, Pr) alloys. J Phys D. 2004;37(19):2628.

    Article  Google Scholar 

  6. Zhong XC, Zeng DC, Liu ZY, Zhang J. Study on magnetic entropy changes in Ce2Fe16.5Co0.5 alloy. Funct Mater. 2005;36(3):348.

    Google Scholar 

  7. Zhang J, Zeng DC, Zhong XC, Liu ZY, Liao J. Structure and magnetic entropy change of Er2−x Ce x Fe17 compounds. Rare Metal Mat Eng. 2005;34(7):1069.

    Google Scholar 

  8. Zhong XC, Liu ZY, Zeng DC, Zhang J, Wei XZ. Magnetic entropy changes of Er2−x Pr x Fe17 magnetic refrigeration alloys at room temperature range. Mater Eng. 2005;34(7):1065.

    Google Scholar 

  9. Zhong XC, Liu ZY, Zeng DC, Wei XZ. Structure, magnetic properties and magnetic entropy changes of room temperature magnetic refrigeration alloys Pr2Fe17−x CO x rare metal. Mater Eng. 2005;34(10):1537.

    Google Scholar 

  10. Zhou XZ, Jiang WJ, Kunkel H, Williams G. Entropy changes accompanying the magnetic phase transitions in low Si-doped Ce2Fe17−x Si x alloy. J Magn Magn Mater. 2008;320:930.

    Article  Google Scholar 

  11. Tishin AM. Magnetic refrigeration in the low-temperature range. J Appl Phys. 1990;68(12):6480.

    Article  Google Scholar 

  12. Sun ZG, Zhang HW, Wang JY, Shen BG. Structure and magnetic properties of Pr2Fe17−x Mn x (x = 0–9) compounds. J Appl Phys. 1999;86(9):5152.

    Article  Google Scholar 

  13. Pecharsky VK, Moorman JO, Gschneidner KA Jr. A 3-350 K small sample calorimeter. Rev Sci Instrum. 1997;68(11):4196.

    Article  Google Scholar 

  14. Buschow KHJ. Intermetallic compounds of rare-earth and 3d transition metals. Rep Prog Phys. 1977;40(10):1179.

    Article  Google Scholar 

  15. Hong NM, Thuy NP, Franse JJM. Magnetic and anistropy properties of Y2Fe17−xMnx and Er2Fe17−x Mn x compounds. Physica B. 1988;153(1–3):53.

    Article  Google Scholar 

  16. Yelon WB, Hu Z, Chen M, Luo H, Ezekwenna PC, Marasinghe GK, James WJ, Buschow KHJ, Middleton DP, Pourarian F. Neutron diffraction and magnetic studies of Nd2Fe17−x T x (T = Si, Mn) alloys. IEEE Trans Magn. 1996;32(5):4431.

    Article  Google Scholar 

  17. Pecharsky VK, Gschneidner KA Jr. Magnetocaloric effect from indirect measurements: magnetization and heat capacity. J Appl Phys. 1999;86(1):565.

    Article  Google Scholar 

  18. Yamada H. Metamagnetic transition and susceptibility maximum in an itinerant-electron system. Phys Rev B. 1993;47(17):11211.

    Article  Google Scholar 

  19. Gschneidner KA, Jr., Pecharsky VK, Pecharsky AO, Zimm CB. Recent developments in magnetic refrigeration. Mater Sci Forum. 1999;69:315.

    Google Scholar 

  20. Gschneidner KA, Pecharsky VK Jr. Magnetocaloric materials. Annu Rev Mater Sci. 2000;301:387.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the U.S. Department of Energy by Iowa State University (No. DE-AC02-07CH11358), the Guangdong Provincial Science & Technology Program (No. 2010B050300008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. x2clB7120290), the Guangzhou Municipal Science and Technology Program (No. 12F582080022), and the Fundamental Research Funds for the Central Universities (Nos. 2012ZZ0013 and 2011ZM0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Chun Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, XC., Liu, ZW., Zeng, DC. et al. Magnetocaloric effect of Pr2Fe17−x Mn x alloys. Rare Met. 33, 552–555 (2014). https://doi.org/10.1007/s12598-013-0134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0134-x

Keywords

Navigation