Skip to main content
Log in

Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) was used to fabricate Al/diamond composites. The influence of diamond particle size on the microstructure and thermal conductivity (TC) of composites was investigated by combining experimental results with model prediction. The results show that both composites with 40 µm particles and 70 µm particles exhibit high density and good TC, and the composite with 70 µm particles indicates an excellent TC of 325 W·m−1·K−1. Their TCs lay between the theoretical estimated bounds. In contrast, the composite with 100 µm particles demonstrates low density as well as poor TC due to its high porosity and weak interfacial bonding. Its TC is even considerably less than the lower bound of the predicted value. Using larger diamond particles can further enhance thermal conductive performance only based on the premise that highly dense composites of strong interfacial bonding can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Q. and Sun D., Recent achievements in research for electronic packaging substrate materials, J. Mater. Sci. Technol., 2000, 8: 66.

    CAS  Google Scholar 

  2. Ren S.B., He X.B., Qu X.H., and Humail I.S., Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCP/Al composites, Compos. Sci. Technol., 2007, 67: 2103.

    Article  CAS  Google Scholar 

  3. Zhang L., Qu X.H., Duan B.H., He X.B., Ren S.B., and Qin M.L., Microstructure and thermo-mechanical properties of pressureless infiltrated SiCP/Cu composites, Compos. Sci. Technol., 2008, 68: 2731.

    Article  CAS  Google Scholar 

  4. Yamamoto Y., Imai T., Tanabe K., Tsuno T., Kumazawa Y., and Fujimori N., The measurement of thermal properties of diamond, Diamond Relat. Mater., 1997, 6: 1057.

    Article  CAS  Google Scholar 

  5. Ekimov E.A., Suetin N.V., Popovich A.F., and Ralchenko V.G., Thermal conductivity of diamond composites sintered under high pressures, Diam. Relat. Mater., 2008, 17: 838.

    Article  CAS  Google Scholar 

  6. Beffort O., Khalid F.A., Weber L., Ruch P., Klotz U.E., Meier S., and Kleiner S., Interface formation in infiltrated Al(Si)/diamond composites, Diamond Relat. Mater., 2006, 15: 1250.

    Article  CAS  Google Scholar 

  7. Ruch P.W., Beffort O., Kleiner S., Weber L., and Uggowitzer P.J., Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity, Compos. Sci. Technol., 2006, 66: 2677.

    Article  CAS  Google Scholar 

  8. Khalid F.A., Beffort O., Klotz U.E., Keller B.A., and Gassera P., Microstructure and interfacial characteristics of aluminum-diamond composite materials, Diamond Relat. Mater., 2004, 13: 393.

    Article  CAS  Google Scholar 

  9. Chen L.L. Jia C.C., and Wang K.M., Spark plasma sintering of high-toughness ZrO2 materials doped with yttrium, Rare Met., 2008, 27: 479.

    Article  Google Scholar 

  10. Jia C.C., He Q., Meng J., and Guo L.N., Influence of mechanical alloying time on the properties of Fe3Al intermetallics prepared by spark plasma sintering, J. Univ. Sci. Technol.. Beijing, 2007, 14: 331.

    CAS  Google Scholar 

  11. Sun L., Lin C.G., Jia C.C., Jia X., and Xian. M., Change in relative density of WC-Co cemented carbides in spark plasma sintering process, Rare Met., 2008, 27: 74.

    Article  CAS  Google Scholar 

  12. Hasselman D.P.H. and Lloyd F.J., Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 1987, 21: 508.

    Article  Google Scholar 

  13. Chu K., Jia C.C., Liang X.B., Chen H., Guo H., Yin F.Z., and Qu X.H., Experimental and modeling study of the thermal conductivity of SiCp/Al composites with bimodal size distribution, J. Mater. Sci., 2009, 44: 4370–8.

    Article  CAS  ADS  Google Scholar 

  14. Chu K., Jia C.C., Liang X.B., Chen H., and Guo H., The thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: Experimental study and modeling, J. Mater. Des., 2009, 30: 3497.

    CAS  Google Scholar 

  15. Flaquer J., Ríos A., Martín-Meizoso A., Nogales S., and Böhm H., Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites, Compos Mater. Sci., 2007, 41: 156.

    Article  CAS  Google Scholar 

  16. Chu K., Jia C.C., and Liang X.B., Comment on “Effect of diamond shapes and associated thermal boundary resistance”, Compos. Mater. Sci., 2009, 45: 1142

    Article  CAS  Google Scholar 

  17. Chu K., Jia C.C., Liang X.B., Chen H., Gao W.J, and Guo H., Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance, J. Mater. Des., 2009, 30: 4311.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, K., Jia, C., Liang, X. et al. Effect of particle size on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Rare Metals 28, 646–650 (2009). https://doi.org/10.1007/s12598-009-0123-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0123-2

Keywords

Navigation