Skip to main content
Log in

First-principles study on the lattice stability of elemental Co, Rh, and Ir in the VIIIB group

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lattice constants, total energies, and densities of state of transition metals Co, Rh, and Ir in the VIIIB group with different crystalline structures were calculated via generalized gradient approximation (GGA) of thetotal energy plane wave pseudopotential method in first-principles. The lattice stabilities of Rh and Ir are ΔG bcc-hcp > ΔG fcc-hcp > 0, agreeing well with those of the projector augmented wave method in first-principles and the CALPHAD method in spite of elemental Co. Analyses of the electronic structures to lattice stability show that crystalline Rh and Ir with fcc structures have the obvious characteristic of a stable phase, agreeing with the results of total energy calculations. Analyses of atomic populations show that the transition rate of electrons from the s state to the p or d state for hcp, fcc, and bcc crystals of Co and Rh increases with the elemental period number to form a stronger cohesion, a higher cohesive energy, or a more stable lattice between atoms in heavier metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaufman L. and Bernstein H., Computer Calculation of Phase Diagram, Academic Press Inc, New York, 1970: 58.

    Google Scholar 

  2. Saunders N. and Miodownik A.P., CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, New York, 1998: 66.

    Google Scholar 

  3. Dinsdale A.T., SGTE data for pure elements, CALPHAD, 1991, 15(4): 317.

    Article  CAS  Google Scholar 

  4. Saunders N., Miodowik A.P., and Dinsdale A.T., Metastable lattice stabilities for the elements, CALPHAD, 1988, 12(4): 351.

    Article  CAS  Google Scholar 

  5. Jones R.O. and Gunarsson O., The density functional formalism, its applications and prospects, Rev. Mod. Phys., 1989, 61(3): 689.

    Article  ADS  CAS  Google Scholar 

  6. Sluiter M.H.F., Ab initio lattice stabilities of some elemental complex structures, CALPHAD, 2006, 30(4): 357.

    Article  CAS  Google Scholar 

  7. Rahman S.M.M, Ali I., and Bhuiyan G.M., Phase stability of alkali metals under pressure: perturbative and non-perturbative treatments, Int. J. Mod. Phys. B, 2002, 16(32): 4847.

    Article  ADS  CAS  Google Scholar 

  8. Garces J.E., Grad G.B., and Guillermet A.F., Theoretical study of the structural properties and thermodynamic stability of the omega phase in the 4d-transition series, J. Alloys Compd., 1999, 289(1–2): 1.

    Article  CAS  Google Scholar 

  9. Grad G.B., Blaha P., and Luitz J., Electronic structure and chemical bonding effects upon the bcc to omega phase transition: Ab initio study of Y, Zr, Nb, and Mo, Phys. Rev. B, 2000, 62(19): 12743–12753.

    Article  ADS  CAS  Google Scholar 

  10. Guo G.Y. and Wang H.H., Calculated elastic constants and electronic and magnetic properties of bcc, fcc, and hcp Cr crystals and thin films, Phys. Rev. B, 2000, 62(8): 5136.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  11. Sin’ko G.V. and Smirnov N.A., Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys. Condens. Matter, 2002, 14(29): 6989.

    Article  ADS  Google Scholar 

  12. Skriver H.L., Crystal structure in one-electron theory, Phys. Rev. B, 1985, 31(4): 1909.

    Article  ADS  CAS  Google Scholar 

  13. Chen X.Q., Li H.L., and Ding X.Y., Electronic structure, ground properties and magnetic ordering for pure γ-Mn, Acta Metall. Sin. (in Chinese), 2002, 38(12): 1251.

    CAS  Google Scholar 

  14. Mishin Y., Mehl M.J., and Papaconstantopoulos D.A., Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations, Phys. Rev. B, 2001, 63(22): 224106.

    Google Scholar 

  15. Perdew J.P., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77(18): 3865.

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Srivastava G.P. and Weaire D., The theory of the cohesive energies of solids, Adv. Phys., 1987, 36(4): 463.

    Article  ADS  CAS  Google Scholar 

  17. Bachelet G.B., Hamann D.R., and Schluter M., Pseudopotentials that work: from H to Pu, Phys. Rev. B, 1982, 26(8): 4199.

    Article  ADS  CAS  Google Scholar 

  18. Lin J.S., Qteish A., Payne M.C., and Heine V., Optimized and transferable nonlocal separable ab initio pseudopotentials, Phys. Rev. B, 1993, 47(8): 4174.

    Article  ADS  Google Scholar 

  19. Vanderbilt D., Soft self-consistent pseudopotentials in a generalized eigen value formalism, Phys. Rev. B, 1990, 41(11): 7892.

    Article  ADS  Google Scholar 

  20. Milman V., Winkler B., White J.A., Pickard C.J., Payne M.C., Akhmatskaya E.V., and Nobes R.H., Electronic structure, properties and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quant. Chem., 2000, 77(5): 895.

    Article  CAS  Google Scholar 

  21. Francis G.P. and Payne M.C., Finite basis set corrections to total energy pseudopotential calculations, J. Phys. Condens. Matter, 1990, 29(19): 4395.

    Article  ADS  Google Scholar 

  22. Milman V., Lee M.H., and Payne M.C., Ground-state properties of CoSi2 determined by a total-energy pseudopotential method, Phys. Rev. B, 1994, 49(23): 16300.

    Article  ADS  CAS  Google Scholar 

  23. Blöchl P.E., Jepsen O., and Andersen O.K., Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B, 1994, 49(23): 16223.

    Google Scholar 

  24. Wang Y., Curtarolo S., Jiang C., and Liu Z.K., Ab initio lattice stability in comparison with CALPHAD lattice stability, CALPHAD, 2004, 28(1): 79.

    Article  CAS  Google Scholar 

  25. Li Z.Y., Properties of Novel Materials from First Principles [Dissertation], University of Science and Technology of China, Hefei, 2004: 5.

    Google Scholar 

  26. Hohenberg P. and Kohn W., Inhomogeneous electron gas, Phys. Rev. B, 1964, 136(3): 864.

    Article  ADS  MathSciNet  Google Scholar 

  27. Kohn W. and Sham L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, 140(4): 1133.

    Article  ADS  MathSciNet  Google Scholar 

  28. Perdew J.P. and Wang Y., Accurate and simple analytic representation of the electron gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244.

    Google Scholar 

  29. Andersen O.K., Linear methods in band theory, Phys. Rev. B, 1975, 12(8): 3060.

    Article  ADS  CAS  Google Scholar 

  30. Blaha P., Schwarz K., Sorantin P., and Trickey S.B., Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun., 1990, 59(2): 399.

    Article  ADS  CAS  Google Scholar 

  31. Devanathan R., Corrales L.R., and Weber W.J., Molecular dynamics simulation of defect production in collision cascades in zircon, Nucl. Instrum. Methods Phys. Res. B, 2005, 228(1–4): 299.

    Article  ADS  CAS  Google Scholar 

  32. John P.P. and Wang Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, 45(23): 13244.

    Google Scholar 

  33. Pulay P., Convergence acceleration of iterative sequences. the case of SCF iteration, Chem. Phys. Lett., 1980, 73(2): 393.

    Article  ADS  CAS  Google Scholar 

  34. Mermin N.D., Thermal properties of the inhomogeneous electron gas, Phys. Rev. A, 1965, 137: 1441.

    ADS  MathSciNet  Google Scholar 

  35. Methfessel M. and Paxton A.T., High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 1989, 40(6): 3616.

    Article  ADS  CAS  Google Scholar 

  36. Kittel C., Solid State Physics, John Wiley and Sons Inc, New York, 1976: 55.

    Google Scholar 

  37. Winter M.J., Cobalt: Crystal Structure [DB/OL], The University of Sheffield and Webelements Ltd., Sheffield, [2008-06-06], http://www.webelements.com/cobalt/crystal_structure.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijin Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, H., Yin, J., Yin, Z. et al. First-principles study on the lattice stability of elemental Co, Rh, and Ir in the VIIIB group. Rare Metals 28, 212–220 (2009). https://doi.org/10.1007/s12598-009-0042-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0042-2

Keywords

Navigation