Skip to main content
Log in

High-efficiency silicon solar cells designed on experimentally achieved nano-engineered low-reflective silicon surface

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We explore the design and optimization of high-efficiency solar cells on low-reflective monocrystalline silicon surfaces using a personal computer one dimensional simulation software tool. The changes in the doping concentration of the n-type and p-type materials profoundly affects the generation and recombination process, thus affecting the conversion efficiency of silicon solar cells. To enhance solar cells' performance, copper nanoparticle (Cu-NP) assisted surface texturization has been employed on the silicon surface with resistivity 1–3 Ω.cm. The surface texturization assists in reducing the surface reflection of silicon by around 0.65%. The doping concentration and the layer thicknesses of a solar cell are optimized and found that 1 × 1014 cm−3 doping concentration at three different thicknesses (5, 10, and 15 μm) of the n-type region exhibit the maximum solar cell conversion efficiency of around 26.19%. The optimized design solution shows the best output parameters namely open-circuit voltage (Voc) around 0.749 V, short circuit current (Isc) about 3.987 A, and a fill factor of 26.19% that can be potentially useful for the fabrication of high-efficiency solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [35]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Gul, Y. Kotak, T. Muneer, Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 34, 485–526 (2016). https://doi.org/10.1177/0144598716650552

    Article  Google Scholar 

  2. H. Li, S. Guo, L. Cui, J. Yan, J. Liu, B. Wang, Review of renewable energy industry in Beijing: Development status, obstacles and proposals. Renew. Sustain. Energy Rev. 43, 711–725 (2015). https://doi.org/10.1016/j.rser.2014.11.074

    Article  Google Scholar 

  3. J.-N. Kang, Y.-M. Wei, L.-C. Liu, R. Han, B.-Y. Yu, J.-W. Wang, Energy systems for climate change mitigation: A systematic review. Appl. Energy 263, 114602 (2020). https://doi.org/10.1016/j.apenergy.2020.114602

    Article  Google Scholar 

  4. N. Das, D. Chandrasekar, M. Nur-E-Alam, M.M.K. Khan, Light reflection loss reduction by nano-structured gratings for highly efficient next-generation gaas solar cells. Energies 13, 4198 (2020). https://doi.org/10.3390/en13164198

    Article  Google Scholar 

  5. T. Walker, M.E. Stuckelberger, T. Nietzold, N. Mohan-Kumar, C. Ossig, M. Kahnt, F. Wittwer, B. Lai, D. Salomon, E. Colegrove, M.I. Bertoni, The nanoscale distribution of copper and its influence on charge collection in CdTe solar cells. Nano Energy 91, 106595 (2022). https://doi.org/10.1016/j.nanoen.2021.106595

    Article  Google Scholar 

  6. S. Shafian, G. Eun Lee, H. Yu, J. Jeong, K. Kim, High-efficiency vivid color cigs solar cell employing nondestructive structural coloration. Sol. RRL. 6, 2100965 (2022). https://doi.org/10.1002/solr.202100965

    Article  Google Scholar 

  7. R. Anil Kumar, M.S. Suresh, J. Nagaraju, Measurement and comparison of AC parameters of silicon (BSR and BSFR) and gallium arsenide (GaAs/Ge) solar cells used in space applications. Sol. Energy Mater. Sol. Cells 60, 155–166 (2000). https://doi.org/10.1016/S0927-0248(99)00080-X

    Article  Google Scholar 

  8. M.K. Hossain, M.F. Pervez, M.N.H. Mia, S. Tayyaba, M.J. Uddin, R. Ahamed, R.A. Khan, M. Hoq, M.A. Khan, F. Ahmed, Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application. Mater. Sci. (2018). https://doi.org/10.1515/msp-2017-0082

    Article  Google Scholar 

  9. M.K. Hossain, M.F. Pervez, M.J. Uddin, S. Tayyaba, M.N.H. Mia, M.S. Bashar, M.K.H. Jewel, M.A.S. Haque, M.A. Hakim, M.A. Khan, Influence of natural dye adsorption on the structural, morphological and optical properties of TiO 2 based photoanode of dye-sensitized solar cell. Mater. Sci. 36, 93–101 (2017). https://doi.org/10.1515/msp-2017-0090

    Article  Google Scholar 

  10. M.K. Basher, M.K. Hossain, M.A.R. Akand, Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik (Stuttg). 176, 93–101 (2019). https://doi.org/10.1016/j.ijleo.2018.09.042

    Article  ADS  Google Scholar 

  11. M.K. Basher, M.K. Hossain, M.J. Uddin, M.A.R. Akand, K.M. Shorowordi, Effect of pyramidal texturization on the optical surface reflectance of monocrystalline photovoltaic silicon wafers. Optik (Stuttg). 172, 801–811 (2018). https://doi.org/10.1016/j.ijleo.2018.07.116

    Article  ADS  Google Scholar 

  12. M.K. Basher, M.K. Hossain, R. Afaz, S. Tayyaba, M.A.R. Akand, M.T. Rahman, N.M. Eman, Study and investigation of phosphorus doping time on emitter region for contact resistance optimization of monocrystalline silicon solar cell. Results Phys. 10, 205–211 (2018). https://doi.org/10.1016/j.rinp.2018.05.038

    Article  ADS  Google Scholar 

  13. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S.V. Kershaw, H. Fu, Z. Fan, E.C.H. Kwok, C.-F. Wang, W.Y. Teoh, A.L. Rogach, Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells. J. Phys. Chem. C 118, 16393–16400 (2014). https://doi.org/10.1021/jp410279z

    Article  Google Scholar 

  14. J. Linghu, L. Shen, M. Yang, S. Xu, Y.P. Feng, Si 24: An efficient solar cell material. J. Phys. Chem. C 121, 15574–15579 (2017). https://doi.org/10.1021/acs.jpcc.7b04032

    Article  Google Scholar 

  15. G. Chen, I. Kashkoush, D. Nemeth, J. Rieker, A. Danel, Development of IPA-free Texturing Processes in Advanced Solar Cell Fabrication. In: Proc. 29th Eur. Photovolt. Sol. Energy Conf. Exhib, pp. 1096–1099, (2014)

  16. S.C. Baker-Finch, K.R. McIntosh, Reflection distributions of textured monocrystalline silicon: Implications for silicon solar cells. Prog. Photovoltaics Res. Appl. (2012). https://doi.org/10.1002/pip.2186

    Article  Google Scholar 

  17. M.S. Kim, J.H. Lee, M.K. Kwak, Review: Surface texturing methods for solar cell efficiency enhancement. Int. J. Precis. Eng. Manuf. 21, 1389–1398 (2020). https://doi.org/10.1007/s12541-020-00337-5

    Article  Google Scholar 

  18. S.W. Glunz, High-efficiency crystalline silicon solar cells. Adv. Optoelectron. 2007, 1–15 (2007). https://doi.org/10.1155/2007/97370

    Article  Google Scholar 

  19. Y. Zhang, B. Wang, X. Li, Z. Gao, Y. Zhou, M. Li, D. Zhang, K. Tao, S. Jiang, H. Ge, S. Xiao, R. Jia, A novel additive for rapid and uniform texturing on high-efficiency monocrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 222, 110947 (2021). https://doi.org/10.1016/j.solmat.2020.110947

    Article  Google Scholar 

  20. Y. Jiang, X. Zhang, F. Wang, Y. Zhao, Optimization of a silicon wafer texturing process by modifying the texturing temperature for heterojunction solar cell applications. RSC Adv. 5, 69629–69635 (2015). https://doi.org/10.1039/C5RA09739H

    Article  ADS  Google Scholar 

  21. C.-Y. Huang, G.-C. Lin, Y.-J. Wu, T.-Y. Lin, Y.-J. Yang, Y.-F. Chen, Efficient light harvesting by well-aligned In2O3 nanopushpins as antireflection layer on si solar cells. J. Phys. Chem. C 115, 13083–13087 (2011). https://doi.org/10.1021/jp201687k

    Article  Google Scholar 

  22. T. Sakata, N. Ikeda, T. Koganezawa, D. Kajiya, K. Saitow, Performance of Si/PEDOT:PSS solar cell controlled by dipole moment of additives. J. Phys. Chem. C 123, 20130–20135 (2019). https://doi.org/10.1021/acs.jpcc.9b05144

    Article  Google Scholar 

  23. Y. Liu, M. Pomaska, W. Duan, D. Qiu, S. Li, A. Lambertz, A. Gad, U. Breuer, F. Finger, U. Rau, K. Ding, Phosphorus catalytic doping on intrinsic silicon thin films for the application in silicon heterojunction solar cells. ACS Appl. Mater. Interfaces 12, 56615–56621 (2020). https://doi.org/10.1021/acsami.0c17416

    Article  Google Scholar 

  24. A. Kolay, D. Maity, P. Ghosal, M. Deepa, Selenium Nanoparticle-decorated silicon nanowires with enhanced liquid-junction photoelectrochemical solar cell performance. J. Phys. Chem. C 123, 8614–8622 (2019). https://doi.org/10.1021/acs.jpcc.9b00062

    Article  Google Scholar 

  25. X.F. Gou, P. Wang, L.K. Jiang, S. Song, Y. Xu, Optimization of texturization on monocrystalline silicon solar cell. Adv. Mater. Res. 239–242, 1322–1325 (2011). https://doi.org/10.4028/www.scientific.net/AMR.239-242.1322

    Article  Google Scholar 

  26. Q. Fan, Z. Wang, Y. Cui, Optimal design of an antireflection coating structure for enhancing the energy-conversion efficiency of a silicon nanostructure solar cell. RSC Adv. 8, 34793–34807 (2018). https://doi.org/10.1039/C8RA03730B

    Article  ADS  Google Scholar 

  27. E. Manea, E. Budianu, M. Purica, D. Cristea, I. Cernica, R. Muller, V. Moagar Poladian, Optimization of front surface texturing processes for high-efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 87, 423–431 (2005). https://doi.org/10.1016/j.solmat.2004.06.013

    Article  Google Scholar 

  28. Z. Yang, J. Yan, W. Yang, Y. Zeng, J. Sun, X. Wang, X. Yang, J.C. Greer, J. Sheng, B. Yan, J. Ye, Back-contact structures for optoelectronic devices: Applications and perspectives. Nano Energy 78, 105362 (2020). https://doi.org/10.1016/j.nanoen.2020.105362

    Article  Google Scholar 

  29. G. Paternoster, Silicon concentrator solar cells: fabrication, characterization and development of innovative designs (University of Trento, 2013)

    Google Scholar 

  30. A. Mahmoud Al, B. Lahlouh, Silicon pyramid structure as a reflectivity reduction mechanism. J. Appl. Sci. 17, 374–383 (2017). https://doi.org/10.3923/jas.2017.374.383

    Article  ADS  Google Scholar 

  31. Q. He, W. Sheng, M. Zhang, G. Xu, P. Zhu, H. Zhang, Z. Yao, F. Gao, F. Liu, X. Liao, Y. Chen, Revealing morphology evolution in highly efficient bulk heterojunction and pseudo-planar heterojunction solar cells by additives treatment. Adv. Energy Mater. 11, 2003390 (2021). https://doi.org/10.1002/aenm.202003390

    Article  Google Scholar 

  32. P. Sundarapura, X.-M. Zhang, R. Yogai, K. Murakami, A. Fave, M. Ihara, Nanostructure of porous Si and anodic SiO2 surface passivation for improved efficiency porous si solar cells. Nanomaterials 11, 459 (2021). https://doi.org/10.3390/nano11020459

    Article  Google Scholar 

  33. A. Uzum, M. Kuriyama, H. Kanda, Y. Kimura, K. Tanimoto, H. Fukui, T. Izumi, T. Harada, S. Ito, Sprayed and spin-coated multilayer antireflection coating films for nonvacuum processed crystalline silicon solar cells. Int. J. Photoenergy 2017, 1–5 (2017). https://doi.org/10.1155/2017/3436271

    Article  Google Scholar 

  34. S. Iqbal, D. Su, H.L. Zhou, T. Zhang, Highly efficient and less time consuming additive free anisotropic etching of silicon wafers for photovoltaics. SILICON 12, 773–778 (2020). https://doi.org/10.1007/s12633-019-00157-x

    Article  Google Scholar 

  35. M.K. Basher, R. Mishan, S. Biswas, M.K. Hossain, M.A.R. Akand, M.A. Matin, Study and analysis the Cu nanoparticle assisted texturization forming low reflective silicon surface for solar cell application. AIP Adv. 9, 075118 (2019). https://doi.org/10.1063/1.5109003

    Article  ADS  Google Scholar 

  36. B. Hussain, A. Aslam, T. Khan, M. Creighton, B. Zohuri, Electron affinity and bandgap optimization of zinc oxide for improved performance of ZnO/Si heterojunction solar cell using PC1D simulations. Electronics 8, 238 (2019). https://doi.org/10.3390/electronics8020238

    Article  Google Scholar 

  37. G. Hashmi, A.R. Akand, M. Hoq, H. Rahman, Study of the enhancement of the efficiency of the monocrystalline silicon solar cell by optimizing effective parameters using PC1D simulation. SILICON 10, 1653–1660 (2018). https://doi.org/10.1007/s12633-017-9649-3

    Article  Google Scholar 

  38. S.-Y. Lien, D.-S. Wuu, Simulation and fabrication of heterojunction silicon solar cells from numerical computer and hot-wire CVD. Prog. Photovoltaics Res. Appl. 17, 489–501 (2009). https://doi.org/10.1002/pip.900

    Article  Google Scholar 

  39. P. Chauhan, S. Agarwal, V. Srivastava, M.K. Sadanand, R. Hossain, J. Pandey, P. Madan, D.K. Lohia, M.A. Dwivedi, Kesterite CZTS based thin film solar cell: Generation, recombination, and performance analysis. J. Phys. Chem. Solids (2023). https://doi.org/10.1016/j.jpcs.2023.111631

    Article  Google Scholar 

  40. P. Chauhan, S. Agarwal, V. Srivastava, S. Maurya, M.K. Hossain, J. Madan, R.K. Yadav, P. Lohia, D.K. Dwivedi, A.A. Alothman, Impact on generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer. Prog. Photovoltaics Res. Appl. (2023). https://doi.org/10.1002/pip.3743

    Article  Google Scholar 

  41. M.K. Hossain, G.F.I. Toki, A. Kuddus, M.H.K. Rubel, M.M. Hossain, H. Bencherif, M.F. Rahman, M.R. Islam, M. Mushtaq, An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci. Rep. 13, 2521 (2023). https://doi.org/10.1038/s41598-023-28506-2

    Article  ADS  Google Scholar 

  42. M.K. Hossain, M.H.K. Rubel, G.F.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, Effect of various electron and hole transport layers on the performance of CsPbI3 -based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega 7, 43210–43230 (2022). https://doi.org/10.1021/acsomega.2c05912

    Article  Google Scholar 

  43. M.F. Rahman, M.J.A.A. Habib, M.H. Ali, M.H.K.K. Rubel, M.R. Islam, A.BMd. Ismail, M.K. Hossain, Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency. AIP Adv. 12, 105317 (2022). https://doi.org/10.1063/5.0108459

    Article  ADS  Google Scholar 

  44. S.K. Biswas, M.S. Sumon, K. Sarker, M.F. Orthe, M.M. Ahmed, A numerical approach to analysis of an environment-friendly sn-based perovskite solar cell with SnO2 buffer layer using SCAPS-1D. Adv. Mater. Sci. Eng. 2023, 1–10 (2023). https://doi.org/10.1155/2023/4154962

    Article  Google Scholar 

  45. M. Burgelman, P. Nollet, S. Degrave, Modeling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  Google Scholar 

  46. A. Cuevas, Y. Wan, D. Yan, C. Samundsett, T. Allen, X. Zhang, J. Cui, J. Bullock, Carrier population control and surface passivation in solar cells. Sol. Energy Mater. Sol. Cells 184, 38–47 (2018). https://doi.org/10.1016/j.solmat.2018.04.026

    Article  Google Scholar 

  47. P.P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, E. Daub, Injection dependence of spontaneous radiative recombination in crystalline silicon: Experimental verification and theoretical analysis. Appl. Phys. Lett. 88, 1–4 (2006). https://doi.org/10.1063/1.2218041

    Article  Google Scholar 

  48. J. Park, V.A. Dao, S. Kim, D.P. Pham, S. Kim, A.H.T. Le, J. Kang, J. Yi, High Efficiency Inorganic/Inorganic Amorphous Silicon/Heterojunction Silicon Tandem Solar Cells. Sci. Rep. 8, 15386 (2018). https://doi.org/10.1038/s41598-018-33734-y

    Article  ADS  Google Scholar 

  49. F.E. Cherif, H. Sammouda, Strategies for high performance perovskite/c-Si tandem solar cells: Effects of bandgap engineering, solar concentration and device temperature. Opt. Mater. (Amst). 106, 109935 (2020). https://doi.org/10.1016/j.optmat.2020.109935

    Article  Google Scholar 

  50. C. Outes, E.F. Fernández, N. Seoane, F. Almonacid, A.J. García-Loureiro, Numerical optimisation and recombination effects on the vertical-tunnel-junction (VTJ) GaAs solar cell up to 10,000 suns. Sol. Energy 203, 136–144 (2020). https://doi.org/10.1016/j.solener.2020.04.029

    Article  ADS  Google Scholar 

  51. S. Kondratenko, O. Kozak, S. Rozouvan, Y.I. Mazur, Y. Maidaniuk, J. Wu, S. Wu, Z.M. Wang, S. Chan, D. Kim, H. Liu, G.J. Salamo, Carrier dynamics and recombination in silicon doped InAs/GaAs quantum dot solar cells with AlAs cap layers. Semicond. Sci. Technol. 35, 115018 (2020). https://doi.org/10.1088/1361-6641/abb1c7

    Article  ADS  Google Scholar 

  52. Y.-C. Wang, C.-W. Chen, T.-Y. Su, T.-Y. Yang, W.-W. Liu, F. Cheng, Z.M. Wang, Y.-L. Chueh, Design of suppressing optical and recombination losses in ultrathin CuInGaSe2 solar cells by Voronoi nanocavity arrays. Nano Energy 78, 105225 (2020). https://doi.org/10.1016/j.nanoen.2020.105225

    Article  Google Scholar 

  53. S.M. Amir-Al Zumahi, N. Arobi, M. Mahbubur Rahman, M. Kamal Hossain, M. Ara Jahan Rozy, M. Bashar, A. Amri, H. Kabir, M. Abul Hossain, F. Ahmed, Understanding the optical behaviors and the power conversion efficiency of novel organic dye and nanostructured TiO2 based integrated DSSCs. Sol. Energy 225, 129–147 (2021). https://doi.org/10.1016/j.solener.2021.07.024

    Article  ADS  Google Scholar 

  54. D.S.H. Chan, J.C.H. Phang, Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics. IEEE Trans. Electron Devices 34, 286–293 (1987). https://doi.org/10.1109/T-ED.1987.22920

    Article  ADS  Google Scholar 

  55. M. Turek, Current and illumination dependent series resistance of solar cells. J. Appl. Phys. 115, 144503 (2014). https://doi.org/10.1063/1.4871017

    Article  ADS  Google Scholar 

  56. Z.Z. Bandić, P.M. Bridger, E.C. Piquette, T.C. McGill, Electron diffusion length and lifetime in p -type GaN. Appl. Phys. Lett. 73, 3276–3278 (1998). https://doi.org/10.1063/1.122743

    Article  ADS  Google Scholar 

  57. X. Cai, X. Zhou, Z. Liu, F. Jiang, Q. Yu, An in-depth analysis of the silicon solar cell key parameters’ optimal magnitudes using PC1D simulations. Optik (Stuttg). 164, 105–113 (2018). https://doi.org/10.1016/j.ijleo.2018.02.102

    Article  ADS  Google Scholar 

  58. D.K. Shah, D. KC, M.S. Akhtar, C.Y. Kim, O.-B. Yang, Vertically arranged zinc oxide nanorods as antireflection layer for crystalline silicon solar cell: A simulation study of photovoltaic properties. Appl. Sci. 10, 6062 (2020). https://doi.org/10.3390/app10176062

    Article  Google Scholar 

  59. G.A. Medvedkin, Effect of diffusion length and surface recombination on the photopleochroism of anisotropic crystals. Semiconductors 34, 517–520 (2000). https://doi.org/10.1134/1.1188018

    Article  ADS  Google Scholar 

  60. H. Mehmood, T. Tauqeer, H. Nasser, S. Hussain, R. Turan, Effect of Hole-Selective Molybdenum Oxide Work Function and Silicon Wafer Resistivity on Dopant-Free Asymmetric Silicon Heterostructure Solar Cell. In: Proc. 2017 Int. Renew. Sustain. Energy Conf., IEEE, pp. 1–5, (2017). https://doi.org/10.1109/IRSEC.2017.8477335.

  61. S. Dabbabi, T. Ben Nasr, N. Kamoun-Turki, Parameters optimization of CIGS solar cell using 2D physical modeling. Results Phys. 7, 4020–4024 (2017). https://doi.org/10.1016/j.rinp.2017.06.057

    Article  ADS  Google Scholar 

  62. T. Kraus, O. Höhn, H. Hauser, B. Bläsi, Optoelectronic simulation of GaAs solar cells with angularly selective filters. J. Appl. Phys. 115, 053103 (2014). https://doi.org/10.1063/1.4863775

    Article  ADS  Google Scholar 

  63. J.L. Gray, The Physics of the Solar Cell. In: Handbook Photovoltaic Science Engineering, Wiley, pp. 61–112, (2005). https://doi.org/10.1002/0470014008.ch3

  64. M.A. Green, E.D. Dunlop, G. Siefer, M. Yoshita, N. Kopidakis, K. Bothe, X. Hao, Solar cell efficiency tables (Version 61). Prog. Photovoltaics Res. Appl. 31, 3–16 (2023). https://doi.org/10.1002/pip.3646

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSPD2023R672) King Saud University, Riyadh, Saudi Arabia. The authors would like to acknowledge the Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), the Institute of Electronics, Bangladesh Atomic Energy Commission (BAEC), and the School of Science, Edith Cowan University, Australia for their numerous supports for this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Nur-E-Alam or M. Khalid Hossain.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zumahi, S.M.AA., Basher, M.K., Arobi, N. et al. High-efficiency silicon solar cells designed on experimentally achieved nano-engineered low-reflective silicon surface. J Opt (2024). https://doi.org/10.1007/s12596-023-01574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01574-3

Keywords

Navigation