Skip to main content
Log in

Spatial and temporal methods for fringe pattern analysis: a review

  • Book Review
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Fringe projection profilometry is widely used in different areas; it has the benefit of retrieving full-field height information from a single or multiple fringe patterns with high precision and accuracy. Several algorithms are proposed on literature, most are techniques that base their analysis on the projection of sinusoidal fringe patterns, where the shape of an object is modulated into the pattern. In this paper, some algorithms have been reviewed and classified as spatial or temporal techniques, which make them suitable for the analysis of dynamic or static objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. D. Malacara, Optical Shop Testing, 3rd edn. (Wiley, Hoboken, 2007), pp.547–791

    Book  Google Scholar 

  2. K.J. Stout, L. Blunt, Three Dimensional Surface Topography, 2nd edn. (Penton Press, London, 2000), pp.50–68

    Google Scholar 

  3. D. Malacara, Z. Malacara, M. Servn, Interferogram Analysis for Optical Testing, 1st edn. (Marcel Dekker, New York, 1998), pp.113–332

    Google Scholar 

  4. P. Hariharan, Optical Interferometry, 2nd edn. (Academic Press, San Diego, 2003), pp.148–156

    Google Scholar 

  5. C. Jiang, B. Lim, S. Zhang, Three-dimensional shape measurement using a structured light system with dual projectors. Appl. Opt. 57, 3983 (2018). https://doi.org/10.1364/AO.57.003983

    Article  ADS  Google Scholar 

  6. H. Yue, Y. Yu, W. Chen, X. Wu, Accurate three dimensional body scanning system based on structured light. Opt. Express 26, 28544 (2018). https://doi.org/10.1364/OE.26.028544

    Article  ADS  Google Scholar 

  7. Y. Li, M. Kästner, E. Reithmeier, Triangulation-based edge measurement using polyview optics. Opt. Lasers Eng. 103, 71 (2018). https://doi.org/10.1016/J.OPTLASENG.2017.11.015

    Article  Google Scholar 

  8. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, Q. Chen, Phase shifting algorithms for fringe projection profilometry: a review. Opt. Lasers Eng. 109, 23 (2018). https://doi.org/10.1016/j.optlaseng.2018.04.019

    Article  Google Scholar 

  9. X. Li, Z. Zhang, C. Yang, Reconstruction method for fringe projection profilometry based on light beams. Appl. Opt. 55, 9895 (2016). https://doi.org/10.1364/AO.55.009895

    Article  ADS  Google Scholar 

  10. C. Faber, M. Strohmeier, H. Liang, How to exploit prior knowledge in industrial 3D-Metrology, in imaging Appl. Opt. 2019 (COSI, IS, MATH, PcAOP) (2019), Pap. CTh2A.6 (The Optical Society, 2019), p. CTh2A.6. https://doi.org/10.1364/cosi.2019.cth2a.6

  11. M. Strohmeier, C. Faber, Harnessing inverse fringe patterns for actual industrial inspection applications, in Imaging Appl. Opt. 2019 (COSI, IS, MATH, pcAOP), OSA Technical Digest (Optica Publishing Group, 2019), paper IW1C.4. https://doi.org/10.1364/ISA.2019.IW1C.4

  12. J.A.N. Buytaert, J.J.J. Dirckx, Study of the performance of 84 phase-shifting algorithms for interferometry. J. Opt. 40, 114 (2011). https://doi.org/10.1007/s12596-011-0044-y

    Article  Google Scholar 

  13. C. Li, Y. Cao, C. Chen, Y. Wan, G. Fu, Y. Wang, Computer-generated Moiré profilometry. Opt. Express 25, 26815 (2017). https://doi.org/10.1364/oe.25.026815

    Article  ADS  Google Scholar 

  14. S. Zhang, Active versus passive projector nonlinear gamma compensation method for high-quality fringe pattern generation, in Proc. SPIE 9110, Dimensional Optical Metrology and Inspection for Practical Applications III, 911002 (2014)) https://doi.org/10.1117/12.2050534

  15. Z. Wang, D.A. Nguyen, J.C. Barnes, Some practical considerations in fringe projection profilometry. Opt. Lasers Eng. 48, 218 (2010). https://doi.org/10.1016/j.optlaseng.2009.06.005

    Article  Google Scholar 

  16. X. Yu, Y. Liu, N. Liu, M. Fan, X. Su, Flexible gamma calculation algorithm based on probability distribution function in digital fringe projection system. Opt. Express 27, 32047 (2019). https://doi.org/10.1364/oe.27.032047

    Article  ADS  Google Scholar 

  17. J. Geng, Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics 3, 128 (2011). https://doi.org/10.1364/AOP.3.000128

    Article  ADS  Google Scholar 

  18. J. Salvi, J. Pagès, J. Batlle, Pattern codification strategies in structured light systems. Pattern Recognit. 37, 827 (2004). https://doi.org/10.1016/J.PATCOG.2003.10.002

    Article  ADS  MATH  Google Scholar 

  19. N. Tornero Martínez, G. Trujillo-Schiaffino, M. Anguiano-Morales, P. G. Mendoza-Villegas, D. P. Salas-Peimbert, L. F. Corral-Martínez, Color profilometry techniques: a review. Opt. Pura Apl. 51(4) 51001:1–26 (2018) https://doi.org/10.7149/OPA.51.4.51001

  20. H. Zhao, C. Zhang, C. Zhou, K. Jiang, M. Fang, Circular fringe projection profilometry. Opt. Lett. 41, 4951 (2016). https://doi.org/10.1364/OL.41.004951

    Article  ADS  Google Scholar 

  21. C. Zhang, H. Zhao, J. Qiao, C. Zhou, L. Zhang, G. Hu, H. Geng, Three-dimensional measurement based on optimized circular fringe projection technique. Opt. Express 27, 2465 (2019). https://doi.org/10.1364/OE.27.002465

    Article  ADS  Google Scholar 

  22. W.-H. Su, C.-Y. Kuo, F.-J. Kao, Three-dimensional trace measurements for fast-moving objects using binary-encoded fringe projection techniques. Appl. Opt. 53, 5283 (2014). https://doi.org/10.1364/ao.53.005283

    Article  ADS  Google Scholar 

  23. K. Chen, J. Xi, Y. Yu, S. Tong, Q. Guo, Three-dimensional measurement of object surfaces with complex shape and color distribution based on projection of color fringe patterns. Appl. Opt. 52, 7360 (2013). https://doi.org/10.1364/AO.52.007360

    Article  ADS  Google Scholar 

  24. W.-H. Su, Color-encoded fringe projection for 3D shape measurements. Opt. Express 15, 13167 (2007). https://doi.org/10.1364/OE.15.013167

    Article  ADS  Google Scholar 

  25. J.L. Flores, J.A. Ferrari, G. García Torales, R. Legarda-Saenz, A. Silva, Color-fringe pattern profilometry using a generalized phase-shifting algorithm. Appl. Opt. 54, 8827 (2015). https://doi.org/10.1364/AO.54.008827

    Article  ADS  Google Scholar 

  26. L. Wang, Y. Ma, H. Zhang, Y. Xin, C. Yuan, T.-C. Poon, Accurate phase-shift estimation for fringe-pattern profilometry. Appl. Opt. 58, G358 (2019). https://doi.org/10.1364/ao.58.00g358

    Article  Google Scholar 

  27. Y. Hu, J. Xi, E. Li, J. Chicharo, Z. Yang, Three-dimensional profilometry based on shift estimation of projected fringe patterns. Appl. Opt. 45, 678 (2006). https://doi.org/10.1364/AO.45.000678

    Article  ADS  Google Scholar 

  28. S.S. Gorthi, Fringe projection techniques: Whither we are? Opt. Lasers Eng. 48, 133 (2010). https://doi.org/10.1016/J.OPTLASENG.2009.09.001

    Article  Google Scholar 

  29. M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156 (1982). https://doi.org/10.1364/JOSA.72.000156

    Article  ADS  Google Scholar 

  30. L. Huang, Q. Kemao, B. Pan, A.K. Asundi, Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 48, 141 (2010). https://doi.org/10.1016/j.optlaseng.2009.04.003

    Article  Google Scholar 

  31. C. Quan, C.J. Tay, L.J. Chen, A study on carrier-removal techniques in fringe projection profilometry. Laser Technol. 39, 1155 (2007). https://doi.org/10.1016/J.OPTLASTEC.2006.09.003

    Article  ADS  Google Scholar 

  32. M. Servin, J.A. Quiroga, M. Padilla, Fringe Pattern Analysis for Optical Metrology, 1st edn. (Wiley, Weinheim, 2014)

    Book  Google Scholar 

  33. D.W. Phillion, General methods for generating phase-shifting interferometry algorithms. Opt. 36, 8098 (1997). https://doi.org/10.1364/AO.36.008098

    Article  ADS  Google Scholar 

  34. Q. Kemao, L.T.H. Nam, L. Feng, S.H. Soon, Comparative analysis on some filters for wrapped phase maps. Appl. Opt. 46, 7412 (2007). https://doi.org/10.1364/AO.46.007412

    Article  ADS  Google Scholar 

  35. L. Ying, Wiley Encycl. Biomed. Eng. (Wiley, Hoboken,2006).

  36. K. Itoh, Analysis of the phase unwrapping algorithm. Opt. 21, 2470 (1982). https://doi.org/10.1364/AO.21.002470

    Article  ADS  Google Scholar 

  37. D. C. Ghiglia, M. D. Pritt, Two-Dimensional Phase Unwrapping : Theory, Algorithms, and Software (Wile, Hoboken, 1998).

  38. K.J. Gåsvik, Optical Metrology (Wiley, Hoboken, 2002)

    Book  Google Scholar 

  39. M. Takeda, K. Mutoh, Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 3977 (1983). https://doi.org/10.1364/AO.22.003977

    Article  ADS  Google Scholar 

  40. Y. Wen, S. Li, H. Cheng, X. Su, Q. Zhang, Universal calculation formula and calibration method in Fourier transform profilometry. Appl. Opt. 49, 6563 (2010). https://doi.org/10.1364/AO.49.006563

    Article  ADS  Google Scholar 

  41. C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, High-speed three-dimensional profilometry for multiple objects with complex shapes. Opt. Express 20, 19493 (2012). https://doi.org/10.1364/OE.20.019493

    Article  ADS  Google Scholar 

  42. H. Jiang, H. Zhao, X. Li, High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces. Opt. Lasers Eng. 50, 1484 (2012). https://doi.org/10.1016/J.OPTLASENG.2011.11.021

    Article  Google Scholar 

  43. S.-T. Yau, High dynamic range scanning technique. Opt. Eng. 48, 033604 (2009). https://doi.org/10.1117/1.3099720

    Article  ADS  Google Scholar 

  44. R. Zhang, H. Guo, A.K. Asundi, Geometric analysis of influence of fringe directions on phase sensitivities in fringe projection profilometry. Appl. Opt. 55, 7675 (2016). https://doi.org/10.1364/AO.55.007675

    Article  ADS  Google Scholar 

  45. H. Sheng, J. Xu, S. Zhang, Dynamic projection theory for fringe projection profilometry. Appl. Opt. 56, 8452 (2017). https://doi.org/10.1364/ao.56.008452

    Article  ADS  Google Scholar 

  46. M. Takeda, Spatial-carrier fringe-pattern analysis and its applications to precision interferometry and profilometry: An overview. Ind. Metrol. 1, 79 (1990) https://doi.org/10.1016/0921-5956(90)80019-R

  47. B. Li, Y. An, S. Zhang, Single-shot absolute 3D shape measurement with Fourier transform profilometry. Appl. Opt. 55, 5219 (2016). https://doi.org/10.1364/AO.55.005219

    Article  ADS  Google Scholar 

  48. Q. Kemao, Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 43, 2695 (2004). https://doi.org/10.1364/AO.43.002695

    Article  ADS  Google Scholar 

  49. Q. Kemao, H. Wang, W. Gao, Windowed Fourier transform for fringe pattern analysis: theoretical analyses. Appl. Opt. 47, 5408 (2008). https://doi.org/10.1364/AO.47.005408

    Article  ADS  Google Scholar 

  50. Q. Kemao, Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Opt. Lasers Eng. 45, 304 (2007). https://doi.org/10.1016/J.OPTLASENG.2005.10.012

    Article  Google Scholar 

  51. J. Zhong, J. Weng, Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry. Appl. Opt. 43, 4993 (2004). https://doi.org/10.1364/AO.43.004993

    Article  ADS  Google Scholar 

  52. M.A. Gdeisat, A. Abid, D.R. Burton, M.J. Lalor, F. Lilley, C. Moore, M. Qudeisat, Spatial and temporal carrier fringe pattern demodulation using the one-dimensional continuous wavelet transform: Recent progress, challenges, and suggested developments. Opt. Lasers Eng. 47, 1348 (2009). https://doi.org/10.1016/J.OPTLASENG.2009.07.009

    Article  Google Scholar 

  53. S. Li, W. Chen, XSu. Appl, Reliability-guided phase unwrapping in wavelet-transform profilometry. Opt. 47, 3369 (2008). https://doi.org/10.1364/AO.47.003369

    Article  ADS  Google Scholar 

  54. W. Zhaoyang, H. Ma, Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing. Opt. Eng. 45, 045601 (2006). https://doi.org/10.1117/1.2188399

    Article  ADS  Google Scholar 

  55. R. Zou, S. Cui, F. Tian, Q. Li, M. Yao, Phase retrieval of optical fringe pattern using wavelet ridge section and adaptive bandpass filter. Opt. Eng. 55, 093103 (2016). https://doi.org/10.1117/1.OE.55.9.093103

    Article  ADS  Google Scholar 

  56. Y. Tounsi, M. Kumar, A. Siari, F. Mendoza-Santoyo, A. Nassim, O. Matoba, Digital four-step phase-shifting technique from a single fringe pattern using Riesz transform. Opt. Lett. 44, 3434 (2019). https://doi.org/10.1364/OL.44.003434

    Article  ADS  Google Scholar 

  57. Y. Tounsi, M. Kumar, A. Siari, F. Mendoza-Santoyo, O. Matoba, A. Nassim, Riesz transform for fringes pattern analysis: advantages and limitations, in Proc. SPIE 11551, Holography, Diffractive Optics, and Applications X, 115510P (2020) https://doi.org/10.1117/12.2574757

  58. T. Yoshizawa, Handbook of optical metrology: principles and applications (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  59. K. Creath, Comparison Of Phase-Measurement Algorithms. Proc. SPIE 0680, Surface Characterization and Testing, (1987). https://doi.org/10.1117/12.939587

  60. G. Cloud, Optical methods of engineering analysis (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  61. J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt. 13, 2693 (1974). https://doi.org/10.1364/AO.13.002693

    Article  ADS  Google Scholar 

  62. C.J. Morgan, Least-squares estimation in phase-measurement interferometry. Opt. Lett. 7, 368 (1982). https://doi.org/10.1364/OL.7.000368

    Article  ADS  Google Scholar 

  63. V. Srinivasan, H.C. Liu, M. Halioua, Automated phase-measuring profilometry of 3-D diffuse objects. Appl. Opt. 23, 3105 (1984). https://doi.org/10.1364/AO.23.003105

    Article  ADS  Google Scholar 

  64. K. Creath, V phase-measurement interferometry techniques. . Prog. Opt. 26, 349 (1988). https://doi.org/10.1016/S0079-6638(08)70178-1

    Article  ADS  Google Scholar 

  65. P.S. Huang, Q.J. Hu, F.-P. Chiang, Double three-step phase-shifting algorithm. Appl. Opt. 41, 4503 (2002). https://doi.org/10.1364/AO.41.004503

    Article  ADS  Google Scholar 

  66. P. Carré, Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures. Metrologia 2, 13 (1966). https://doi.org/10.1088/0026-1394/2/1/005

    Article  ADS  Google Scholar 

  67. D. Li, C. Liu, J. Tian, Telecentric 3D profilometry based on phase-shifting fringe projection. Opt. Express 22, 31826 (2014). https://doi.org/10.1364/oe.22.031826

    Article  ADS  Google Scholar 

  68. P. Hariharan, B.F. Oreb, T. Eiju, Digital phase-stepping interferometry: effects of multiply reflected beams. Appl. Opt. 26, 2504 (1987). https://doi.org/10.1364/AO.26.002506

    Article  ADS  Google Scholar 

  69. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, Digital wave-front measuring interferometry: some systematic error sources. Appl. Opt. 22, 3421 (1983). https://doi.org/10.1364/AO.22.003421

    Article  ADS  Google Scholar 

  70. P.L. Wizinowich, Phase shifting interferometry in the presence of vibration: a new algorithm and system. Appl. Opt. 29, 3271 (1990). https://doi.org/10.1364/AO.29.003271

    Article  ADS  Google Scholar 

  71. P. L. Wizinowich, System for phase shifting interferometry in the presence of vibration, in Proc. SPIE 1164, Surface Characterization and Testing II (1989) https://doi.org/10.1117/12.962804

  72. S. Zhang, S.-T. Yau, High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm. Opt. Eng. 46, 113603 (2007). https://doi.org/10.1117/1.2802546

    Article  ADS  Google Scholar 

  73. X.-Y. Su, J. Li, L.-R. Guo, W.-Y. Su, An improved fourier transform profilometry, in Proc. SPIE 0954, Optical Testing and Metrology II, (1989) https://doi.org/10.1117/12.947595

  74. L. Guo, X. Su, L. Guo, Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes. Opt. Eng. 29, 1439 (Opt. Eng. 29(12), (1990) https://doi.org/10.1117/12.55746

Download references

Acknowledgements

The authors wish to thank the financial support of Tecnológico Nacional de México and Consejo Nacional de Ciencia y Tecnología (México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Zendejas-Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendejas-Hernández, E., Trujillo-Schiaffino, G., Anguiano-Morales, M. et al. Spatial and temporal methods for fringe pattern analysis: a review. J Opt 52, 888–899 (2023). https://doi.org/10.1007/s12596-023-01166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01166-1

Keywords

Navigation